These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37699693)

  • 1. [Construction of strains for bioconversion of steroid key intermediates and intelligent industrial production].
    Feng J; Zhang R; Zhang Z; Wu Q; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2022 Nov; 38(11):4335-4342. PubMed ID: 37699693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals.
    Feng J; Wu Q; Zhu D; Ma Y
    ChemSusChem; 2022 May; 15(9):e202102399. PubMed ID: 35089653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycolicibacterium cell factory for the production of steroid-based drug intermediates.
    Zhao A; Zhang X; Li Y; Wang Z; Lv Y; Liu J; Alam MA; Xiong W; Xu J
    Biotechnol Adv; 2021 Dec; 53():107860. PubMed ID: 34710554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway.
    Song S; He J; Gao M; Huang Y; Cheng X; Su Z
    Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9α-hydroxylated derivatives by engineered Mycobacteria.
    Li X; Chen T; Peng F; Song S; Yu J; Sidoine DN; Cheng X; Huang Y; He Y; Su Z
    Microb Cell Fact; 2021 Aug; 20(1):158. PubMed ID: 34399754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs.
    Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in
    Zhang Y; Xiao P; Pan D; Zhou X
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization].
    Ma Y; Wang X; Wang M; Li H; Shi J; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1198-1206. PubMed ID: 28869739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights on Steroid Biotechnology.
    Fernández-Cabezón L; Galán B; García JL
    Front Microbiol; 2018; 9():958. PubMed ID: 29867863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion of Phytosterols into Androstenedione by Mycolicibacterium.
    Josefsen KD; Nordborg A; Le SB; Olsen SM; Sletta H
    Methods Mol Biol; 2023; 2704():245-267. PubMed ID: 37642849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of Phytosterols into Androstenedione-A Technological Prospecting Study.
    Nunes VO; Vanzellotti NC; Fraga JL; Pessoa FLP; Ferreira TF; Amaral PFF
    Molecules; 2022 May; 27(10):. PubMed ID: 35630641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of Phytosterols into Androstenedione by Mycobacterium.
    Josefsen KD; Nordborg A; Sletta H
    Methods Mol Biol; 2017; 1645():177-197. PubMed ID: 28710629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of Phytosterols into Androstadienedione by Mycobacterium smegmatis CECT 8331.
    García-Fernández J; Martínez I; Fernández-Cabezón L; Felpeto-Santero C; García JL; Galán B
    Methods Mol Biol; 2017; 1645():211-225. PubMed ID: 28710631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-Up of Phytosterols Bioconversion into Androstenedione.
    Martínez-Cámara S; Bahíllo E; Barredo JL; Rodríguez-Sáiz M
    Methods Mol Biol; 2017; 1645():199-210. PubMed ID: 28710630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum.
    Xiong LB; Liu HH; Zhao M; Liu YJ; Song L; Xie ZY; Xu YX; Wang FQ; Wei DZ
    Microb Cell Fact; 2020 Mar; 19(1):80. PubMed ID: 32228591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum.
    Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-Up of Phytosterols Bioconversion into Androstenedione.
    Martínez-Cámara S; de la Torre M; Barredo JL; Rodríguez-Sáiz M
    Methods Mol Biol; 2023; 2704():231-243. PubMed ID: 37642848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum.
    Wang X; Chen R; Wu Y; Wang D; Wei D
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1553-1560. PubMed ID: 31792785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp.
    Xu XW; Gao XQ; Feng JX; Wang XD; Wei DZ
    Lett Appl Microbiol; 2015 Jul; 61(1):63-8. PubMed ID: 25868395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum.
    Xiong LB; Liu HH; Xu LQ; Wei DZ; Wang FQ
    J Agric Food Chem; 2017 Jan; 65(3):626-631. PubMed ID: 28035826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.