These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37699718)

  • 1. Genetic Reduction of Insulin Signaling Mitigates Amyloid-β Deposition by Promoting Expression of Extracellular Matrix Proteins in the Brain.
    Sano T; Ochiai T; Nagayama T; Nakamura A; Kubota N; Kadowaki T; Wakabayashi T; Iwatsubo T
    J Neurosci; 2023 Oct; 43(43):7226-7241. PubMed ID: 37699718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential involvement of insulin receptor substrate (IRS)-1 and IRS-2 in brain insulin signaling is associated with the effects on amyloid pathology in a mouse model of Alzheimer's disease.
    Ochiai T; Sano T; Nagayama T; Kubota N; Kadowaki T; Wakabayashi T; Iwatsubo T
    Neurobiol Dis; 2021 Nov; 159():105510. PubMed ID: 34537327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin receptor signaling mediates APP processing and β-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer's disease.
    Stöhr O; Schilbach K; Moll L; Hettich MM; Freude S; Wunderlich FT; Ernst M; Zemva J; Brüning JC; Krone W; Udelhoven M; Schubert M
    Age (Dordr); 2013 Feb; 35(1):83-101. PubMed ID: 22057897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer's disease.
    Freude S; Hettich MM; Schumann C; Stöhr O; Koch L; Köhler C; Udelhoven M; Leeser U; Müller M; Kubota N; Kadowaki T; Krone W; Schröder H; Brüning JC; Schubert M
    FASEB J; 2009 Oct; 23(10):3315-24. PubMed ID: 19487308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ABCA7 Deficiency Accelerates Amyloid-β Generation and Alzheimer's Neuronal Pathology.
    Sakae N; Liu CC; Shinohara M; Frisch-Daiello J; Ma L; Yamazaki Y; Tachibana M; Younkin L; Kurti A; Carrasquillo MM; Zou F; Sevlever D; Bisceglio G; Gan M; Fol R; Knight P; Wang M; Han X; Fryer JD; Fitzgerald ML; Ohyagi Y; Younkin SG; Bu G; Kanekiyo T
    J Neurosci; 2016 Mar; 36(13):3848-59. PubMed ID: 27030769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing amyloid-β pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI imaging mass spectrometry.
    Carlred L; Michno W; Kaya I; Sjövall P; Syvänen S; Hanrieder J
    J Neurochem; 2016 Aug; 138(3):469-78. PubMed ID: 27115712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer's disease.
    Wakabayashi T; Yamaguchi K; Matsui K; Sano T; Kubota T; Hashimoto T; Mano A; Yamada K; Matsuo Y; Kubota N; Kadowaki T; Iwatsubo T
    Mol Neurodegener; 2019 Apr; 14(1):15. PubMed ID: 30975165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of neuronal insulin/insulin-like growth factor-1 signaling for the pathogenesis of Alzheimer's disease: possible therapeutic implications.
    Zemva J; Schubert M
    CNS Neurol Disord Drug Targets; 2014 Mar; 13(2):322-37. PubMed ID: 24059318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease.
    Lee MH; Lin SR; Chang JY; Schultz L; Heath J; Hsu LJ; Kuo YM; Hong Q; Chiang MF; Gong CX; Sze CI; Chang NS
    Cell Death Dis; 2010 Dec; 1(12):e110. PubMed ID: 21368882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blocking IGF Signaling in Adult Neurons Alleviates Alzheimer's Disease Pathology through Amyloid-β Clearance.
    Gontier G; George C; Chaker Z; Holzenberger M; Aïd S
    J Neurosci; 2015 Aug; 35(33):11500-13. PubMed ID: 26290229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer's disease mice.
    Kocherhans S; Madhusudan A; Doehner J; Breu KS; Nitsch RM; Fritschy JM; Knuesel I
    J Neurosci; 2010 Jul; 30(27):9228-40. PubMed ID: 20610758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer's disease.
    Long-Smith CM; Manning S; McClean PL; Coakley MF; O'Halloran DJ; Holscher C; O'Neill C
    Neuromolecular Med; 2013 Mar; 15(1):102-14. PubMed ID: 23011726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular systems evaluation of oligomerogenic APP(E693Q) and fibrillogenic APP(KM670/671NL)/PSEN1(Δexon9) mouse models identifies shared features with human Alzheimer's brain molecular pathology.
    Readhead B; Haure-Mirande JV; Zhang B; Haroutunian V; Gandy S; Schadt EE; Dudley JT; Ehrlich ME
    Mol Psychiatry; 2016 Aug; 21(8):1099-111. PubMed ID: 26552589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Alzheimer's disease gene expression signatures and immune profile in APP mouse models: a discrete transcriptomic view of Aβ plaque pathology.
    Rothman SM; Tanis KQ; Gandhi P; Malkov V; Marcus J; Pearson M; Stevens R; Gilliland J; Ware C; Mahadomrongkul V; O'Loughlin E; Zeballos G; Smith R; Howell BJ; Klappenbach J; Kennedy M; Mirescu C
    J Neuroinflammation; 2018 Sep; 15(1):256. PubMed ID: 30189875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between amyloid-β and hemoglobin: implications for amyloid plaque formation in Alzheimer's disease.
    Chuang JY; Lee CW; Shih YH; Yang T; Yu L; Kuo YM
    PLoS One; 2012; 7(3):e33120. PubMed ID: 22412990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alzheimer's disease amyloid-β pathology in the lens of the eye.
    Moncaster JA; Moir RD; Burton MA; Chadwick O; Minaeva O; Alvarez VE; Ericsson M; Clark JI; McKee AC; Tanzi RE; Goldstein LE
    Exp Eye Res; 2022 Aug; 221():108974. PubMed ID: 35202705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CERT
    Crivelli SM; Luo Q; Stevens JAA; Giovagnoni C; van Kruining D; Bode G; den Hoedt S; Hobo B; Scheithauer AL; Walter J; Mulder MT; Exley C; Mold M; Mielke MM; De Vries HE; Wouters K; van den Hove DLA; Berkes D; Ledesma MD; Verhaagen J; Losen M; Bieberich E; Martinez-Martinez P
    Alzheimers Res Ther; 2021 Feb; 13(1):45. PubMed ID: 33597019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of LR11/SORLA enhances early pathology in a mouse model of amyloidosis: evidence for a proximal role in Alzheimer's disease.
    Dodson SE; Andersen OM; Karmali V; Fritz JJ; Cheng D; Peng J; Levey AI; Willnow TE; Lah JJ
    J Neurosci; 2008 Nov; 28(48):12877-86. PubMed ID: 19036982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Dynamics of β-Amyloid Proteoforms Accumulation in the Brain of a 5xFAD Mouse Model of Alzheimer's Disease.
    Bugrova AE; Strelnikova PA; Indeykina MI; Kononikhin AS; Zakharova NV; Brzhozovskiy AG; Barykin EP; Pekov SI; Gavrish MS; Babaev AA; Kosyreva AM; Morozova AY; Degterev DA; Mitkevich VA; Popov IA; Makarov AA; Nikolaev EN
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease.
    Sakakibara Y; Sekiya M; Saito T; Saido TC; Iijima KM
    BMC Neurosci; 2019 Mar; 20(1):13. PubMed ID: 30894120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.