These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37699828)

  • 41. As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism.
    Dong Y; Gao M; Song Z; Qiu W
    Chemosphere; 2020 Jan; 239():124792. PubMed ID: 31526998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ionic specificity mediates the transport and retention of graphene-based nanomaterials in saturated porous media.
    Xia T; Xie Y; Bai S; Guo X; Zhu L; Zhang C
    Sci Total Environ; 2023 Jan; 854():158724. PubMed ID: 36108856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transport and deposition behaviors of microplastics in porous media: Co-impacts of N fertilizers and humic acid.
    Rong H; Li M; He L; Zhang M; Hsieh L; Wang S; Han P; Tong M
    J Hazard Mater; 2022 Mar; 426():127787. PubMed ID: 34848067
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions.
    Xia T; Lin Y; Guo X; Li S; Cui J; Ping H; Zhang J; Zhong R; Du L; Han C; Zhu L
    Environ Pollut; 2019 Aug; 251():723-730. PubMed ID: 31112926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of Bisphenol A on the transport and deposition behaviors of bacteria in quartz sand.
    Wu D; He L; Sun R; Tong M; Kim H
    Water Res; 2017 Sep; 121():1-10. PubMed ID: 28505529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles.
    Wang X; Sun T; Zhu H; Han T; Wang J; Dai H
    J Environ Manage; 2020 Aug; 267():110656. PubMed ID: 32349960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations.
    Chen YC; Chen KF; Lin KA; Chen JK; Jiang XY; Lin CH
    J Hazard Mater; 2022 Apr; 427():127871. PubMed ID: 34862106
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Attachment of positively and negatively charged submicron polystyrene plastics on nine typical soils.
    Wang Y; Wang F; Xiang L; Bian Y; Wang Z; Srivastava P; Jiang X; Xing B
    J Hazard Mater; 2022 Jun; 431():128566. PubMed ID: 35359109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of titanium dioxide nanoparticles on the transport and deposition of microplastics in quartz sand.
    Cai L; He L; Peng S; Li M; Tong M
    Environ Pollut; 2019 Oct; 253():351-357. PubMed ID: 31325879
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modified nano zero-valent iron reduce toxicity of polystyrene microplastics to ryegrass (Lolium Perenne L.).
    Zhou W; Huang D; Chen S; Du L; Wang G; Li R; Xu W
    Chemosphere; 2023 Oct; 337():139152. PubMed ID: 37290504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption of arsenite to polystyrene microplastics in the presence of humus.
    Dong Y; Gao M; Qiu W; Song Z
    Environ Sci Process Impacts; 2020 Dec; 22(12):2388-2397. PubMed ID: 33206081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cotransport and Deposition of Iron Oxides with Different-Sized Plastic Particles in Saturated Quartz Sand.
    Li M; He L; Zhang M; Liu X; Tong M; Kim H
    Environ Sci Technol; 2019 Apr; 53(7):3547-3557. PubMed ID: 30859829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Environ Pollut; 2017 Oct; 229():49-59. PubMed ID: 28577382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of (bi)carbonate on bacterial interaction with quartz and metal oxide-coated surfaces.
    Park SJ; Kim SB
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):57-62. PubMed ID: 19896343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating transport kinetics of polystyrene nanoplastics in saturated porous media.
    Ye X; Cheng Z; Wu M; Hao Y; Hu BX; Mo C; Li Q; Xiang L; Zhao H; Wu J; Wu J; Lu G
    Ecotoxicol Environ Saf; 2022 Aug; 241():113820. PubMed ID: 36068748
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oil spills enhanced dispersion and transport of microplastics in sea water and sand at coastal beachheads.
    Gui X; Ren Z; Xu X; Chen X; Zhao L; Qiu H; Cao X
    J Hazard Mater; 2022 Aug; 436():129312. PubMed ID: 35739804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media.
    Du M; Wang L; Ebrahimi A; Chen G; Shu S; Zhu K; Shen C; Li B; Wang G
    Ecotoxicol Environ Saf; 2021 May; 218():112291. PubMed ID: 33957420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation.
    Xia T; Ma P; Qi Y; Zhu L; Qi Z; Chen W
    Environ Pollut; 2019 Apr; 247():383-391. PubMed ID: 30690234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coaggregation of micro polystyrene particles and suspended minerals under concentrated salt solution: A perspective of terrestrial-to-ocean transfer of microplastics.
    Vu TTT; Nguyen DT; Nguyen NTM; Nguyen MN
    Mar Pollut Bull; 2022 Dec; 185(Pt B):114317. PubMed ID: 36410199
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.
    Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y
    J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.