These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37699919)

  • 1. Evaluating the appropriateness of γ-graphyne derivatives as electrode materials for supercapacitors.
    Kenarsari MA; Vafaee M; Nasrollahpour M; Khoshdel SMM
    Sci Rep; 2023 Sep; 13(1):15090. PubMed ID: 37699919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of stability, electronic structure and quantum capacitance of B-, N- and O-doped graphynes as supercapacitor electrodes.
    Chen X; Xu W; Song B; He P
    J Phys Condens Matter; 2020 May; 32(21):215501. PubMed ID: 31968329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations.
    Xu Q; Yang G; Fan X; Zheng W
    ACS Omega; 2019 Aug; 4(8):13209-13217. PubMed ID: 31460448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of metal atoms on silicene: stability and quantum capacitance of silicene-based electrode materials.
    Xu Q; Yang GM; Fan X; Zheng WT
    Phys Chem Chem Phys; 2019 Feb; 21(8):4276-4285. PubMed ID: 30724282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors.
    da Silva DAC; Paulista Neto AJ; Pascon AM; Fileti EE; Fonseca LRC; Zanin HG
    Phys Chem Chem Phys; 2020 Feb; 22(7):3906-3913. PubMed ID: 32016251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced quantum capacitance of MX
    Rani B; Bubanja V; Jindal VK
    J Phys Condens Matter; 2023 Jul; 35(41):. PubMed ID: 37419126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors.
    Vatamanu J; Ni X; Liu F; Bedrov D
    Nanotechnology; 2015 Nov; 26(46):464001. PubMed ID: 26511198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.
    Song C; Wang J; Meng Z; Hu F; Jian X
    Chemphyschem; 2018 Jul; 19(13):1579-1583. PubMed ID: 29603849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving high quantum capacitance graphdiyne through doping and adsorption.
    Yang G; Li Z; Wang S; Lin J
    Phys Chem Chem Phys; 2023 Jan; 25(3):2012-2018. PubMed ID: 36541670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.
    Paek E; Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12168-76. PubMed ID: 24983127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ball-milling synthesis of N-graphyne with controllable nitrogen doping sites for efficient electrocatalytic oxygen evolution and supercapacitors.
    Ding W; Sun M; Gao B; Liu W; Ding Z; Anandan S
    Dalton Trans; 2020 Aug; 49(31):10958-10969. PubMed ID: 32725021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon.
    Li Z; Bu F; Wei J; Yao W; Wang L; Chen Z; Pan D; Wu M
    Nanoscale; 2018 Dec; 10(48):22871-22883. PubMed ID: 30488932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of quantum capacitance of Co-doped α-MnO
    Vijayan AK; M S S; Kour S; Dastider SG; Mondal K; Sharma AL
    Phys Chem Chem Phys; 2023 Sep; 25(37):25789-25802. PubMed ID: 37724421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Density Functional Theory Study of Modified Germanene-Based Electrode Materials.
    Si X; She W; Xu Q; Yang G; Li Z; Wang S; Luan J
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Fe Doping on the Electrochemical Performance of a ZnO-Nanostructure-Based Electrode for Supercapacitors.
    Kumar S; Ahmed F; Shaalan NM; Arshi N; Dalela S; Chae KH
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration.
    Zhan C; Zhang Y; Cummings PT; Jiang DE
    Phys Chem Chem Phys; 2016 Feb; 18(6):4668-74. PubMed ID: 26794824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping-driven electronic structure and conductivity modification of nickel sulfide.
    Xiao Z; Yan L; Hu Q; Xiang B; Wang Y; Hao J; Zou X; Li W; Wei S
    Dalton Trans; 2022 May; 51(21):8318-8326. PubMed ID: 35583114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Rate Performance Supercapacitors Based on N, O Co-Doped Hierarchical Porous Carbon Foams Synthesized via Chemical Blowing and Dual Templates.
    Zhang Q; Feng L; Liu Z; Jiang L; Lan T; Zhang C; Liu K; He S
    Molecules; 2023 Oct; 28(19):. PubMed ID: 37836840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel-cobalt layered double hydroxide nanosheets anchored to the inner wall of wood carbon tracheids by nitrogen-doped atoms for high-performance supercapacitors.
    Li Z; Wang X; Wang Z; Wang L; Guo Y; Zhou C; Li X; Du K; Luo Y
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):70-78. PubMed ID: 34624766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MnMoO
    Fu H; Wang M; Ma Q; Wang M; Ma X; Ye Y
    Nanoscale Adv; 2022 Jun; 4(12):2704-2712. PubMed ID: 36132293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.