These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37700070)

  • 1. Using single vacancies to build quantum antidots with atomic precision.
    Nat Nanotechnol; 2023 Dec; 18(12):1379-1380. PubMed ID: 37700070
    [No Abstract]   [Full Text] [Related]  

  • 2. Atomically precise vacancy-assembled quantum antidots.
    Fang H; Mahalingam H; Li X; Han X; Qiu Z; Han Y; Noori K; Dulal D; Chen H; Lyu P; Yang T; Li J; Su C; Chen W; Cai Y; Neto AHC; Novoselov KS; Rodin A; Lu J
    Nat Nanotechnol; 2023 Dec; 18(12):1401-1408. PubMed ID: 37653051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of A Magnetic Field on the Transport and Noise Properties of a Graphene Ribbon with Antidots.
    Marconcini P; Macucci M
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33113892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localizing Fractional Quasiparticles on Graphene Quantum Hall Antidots.
    Mills SM; Averin DV; Du X
    Phys Rev Lett; 2020 Nov; 125(22):227701. PubMed ID: 33315430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coulomb blockade of anyons in quantum antidots.
    Averin DV; Nesteroff JA
    Phys Rev Lett; 2007 Aug; 99(9):096801. PubMed ID: 17931025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain.
    Kim H; Meng Y; Kwon JH; Rouviére JL; Zuo JM
    IUCrJ; 2018 Jan; 5(Pt 1):67-72. PubMed ID: 29354272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coulomb oscillations in antidots in the integer and fractional quantum Hall regimes.
    Kou A; Marcus CM; Pfeiffer LN; West KW
    Phys Rev Lett; 2012 Jun; 108(25):256803. PubMed ID: 23004632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum antidot formation and correlation to optical shift of gold nanoparticles embedded in MgO.
    Xu J; Moxom J; Overbury SH; White CW; Mills AP; Suzuki R
    Phys Rev Lett; 2002 Apr; 88(17):175502. PubMed ID: 12005767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene based dots and antidots: a comparative study from first principles.
    Cui XY; Li L; Zheng RK; Liu ZW; Stampfl C; Ringer SP
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1251-5. PubMed ID: 23646613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erasable electrostatic lithography for quantum components.
    Crook R; Graham AC; Smith CG; Farrer I; Beere HE; Ritchie DA
    Nature; 2003 Aug; 424(6950):751-4. PubMed ID: 12917677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of atomic vacancies and temperature on the tensile properties of single-walled MoS
    Xiong QL; Zhang J; Xiao C; Li ZH
    Phys Chem Chem Phys; 2017 Aug; 19(30):19948-19958. PubMed ID: 28722056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General picture of quantum Hall transitions in quantum antidots.
    Mace DR; Barnes CH; Faini G; Mailly D; Simmons MY; Ford CJ; Pepper M
    Phys Rev B Condens Matter; 1995 Sep; 52(12):R8672-R8675. PubMed ID: 9979923
    [No Abstract]   [Full Text] [Related]  

  • 13. Temperature-dependent screening of the edge state around antidots in the quantum Hall regime.
    Kato M; Endo A; Katsumoto S; Iye Y
    Phys Rev Lett; 2009 Feb; 102(8):086802. PubMed ID: 19257767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots.
    Zhou Y; Yang P; Zu H; Gao F; Zu X
    Phys Chem Chem Phys; 2013 Jul; 15(25):10385-94. PubMed ID: 23681313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repairing single and double atomic vacancies in a C
    Ma D; Zhang J; Tang Y; Fu Z; Yang Z; Lu Z
    Phys Chem Chem Phys; 2018 May; 20(19):13517-13527. PubMed ID: 29726866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoS
    Zhang S; Liu X; Liu C; Luo S; Wang L; Cai T; Zeng Y; Yuan J; Dong W; Pei Y; Liu Y
    ACS Nano; 2018 Jan; 12(1):751-758. PubMed ID: 29261276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of compressible edge channel rings in quantum antidots.
    Karakurt I; Goldman VJ; Liu J; Zaslavsky A
    Phys Rev Lett; 2001 Oct; 87(14):146801. PubMed ID: 11580667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comment on "Absence of compressible edge channel rings in quantum antidots".
    Kataoka M; Ford CJ
    Phys Rev Lett; 2004 May; 92(19):199703; author reply 199704. PubMed ID: 15169466
    [No Abstract]   [Full Text] [Related]  

  • 19. Detection of compressible and incompressible states in quantum dots and antidots by far-infrared spectroscopy.
    Bollweg K; Kurth T; Heitmann D; Gudmundsson V; Vasiliadou E; Grambow P; Eberl K
    Phys Rev Lett; 1996 Apr; 76(15):2774-2777. PubMed ID: 10060785
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparison of magnetotransport in two-dimensional arrays of quantum dots and antidots.
    Huang D; Gumbs G; MacDonald AH
    Phys Rev B Condens Matter; 1993 Jul; 48(4):2843-2846. PubMed ID: 10008696
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.