BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37700532)

  • 1. Influence of Backbone on the Performance of Pendant Polymer Electrode Materials in Li-ion Batteries.
    Grignon E; Battaglia AM; Liu JT; McAllister BT; Seferos DS
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45345-45353. PubMed ID: 37700532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polytriphenylamine composites for energy storage electrodes: effect of pendant
    Dianatdar A; Akin O; Mongatti I; Momand J; Ruggeri G; Picchioni F; Bose RK
    RSC Adv; 2021 Oct; 11(56):35187-35196. PubMed ID: 35493154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging polymer electrodes for aqueous energy storage.
    Wang X; Zhou J; Tang W
    Mater Horiz; 2021 Aug; 8(9):2373-2386. PubMed ID: 34870290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PROXYL-Type Norbornene Polymer for High-Voltage Cathodes in Lithium Batteries.
    Hatakeyama-Sato K; Matsumoto S; Takami H; Nagatsuka T; Oyaizu K
    Macromol Rapid Commun; 2021 Oct; 42(19):e2100374. PubMed ID: 34347338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dibenzo[a,e]Cyclooctatetraene-Functionalized Polymers as Potential Battery Electrode Materials.
    Desmaizieres G; Speer ME; Thiede I; Gaiser P; Perner V; Kolek M; Bieker P; Winter M; Esser B
    Macromol Rapid Commun; 2021 Sep; 42(18):e2000725. PubMed ID: 33660343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Molecular Structure and Electrode Architecture of Anthraquinone-Containing Polymer Cathode for High-Performance Lithium-Ion Batteries.
    Yang J; Shi Y; Sun P; Xiong P; Xu Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42305-42312. PubMed ID: 31622549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Enhancement of Polymer Electrode Materials for Lithium-Ion Batteries: From a Rigid Homopolymer to Soft Copolymers.
    Yang J; Shi Y; Li M; Sun P; Xu Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32666-32672. PubMed ID: 32584017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EQCM Investigation of a Dual-Doped Polymer Electrode for Li-Ion Batteries with Improved Reversible Capacity.
    Xue M; Cao M; Xu C; Xiao D; Zhang X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25584-25591. PubMed ID: 35622015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced 1D Metal-Organic Coordination Polymer for Lithium-Ion Batteries: Designing, Synthesis, and Working Mechanism.
    Wu Y; Lai M; Liang J; Liang J; Zhang D; Zeng R; Li J; Xu Z; Chuangchanh P; Du M; Wu XL
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1452-1462. PubMed ID: 36583528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-Based Polyhydroxyanthraquinones as High-Voltage Organic Electrode Materials for Batteries.
    Lap T; Goujon N; Mantione D; Ruipérez F; Mecerreyes D
    ACS Appl Polym Mater; 2023 Nov; 5(11):9128-9137. PubMed ID: 37970531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthraquinone-Quinizarin Copolymer as a Promising Electrode Material for High-Performance Lithium and Potassium Batteries.
    Shchurik EV; Kraevaya OA; Vasil'ev SG; Zhidkov IS; Kurmaev EZ; Shestakov AF; Troshin PA
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonyl Bridge-Based p-π Conjugated Polymers as High-Performance Electrodes of Organic Lithium-Ion Batteries.
    Zu Y; Xu Y; Ma L; Kang Q; Yao H; Hou J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18457-18464. PubMed ID: 32212633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzoquinone- and Naphthoquinone-Bearing Polymers Synthesized by Ring-Opening Metathesis Polymerization as Cathode Materials for Lithium-Ion Batteries.
    Shi Y; Sun P; Yang J; Xu Y
    ChemSusChem; 2020 Jan; 13(2):334-340. PubMed ID: 31742909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage.
    Wang A; Tan R; Breakwell C; Wei X; Fan Z; Ye C; Malpass-Evans R; Liu T; Zwijnenburg MA; Jelfs KE; McKeown NB; Chen J; Song Q
    J Am Chem Soc; 2022 Sep; 144(37):17198-17208. PubMed ID: 36074146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
    Burgess M; Moore JS; Rodríguez-López J
    Acc Chem Res; 2016 Nov; 49(11):2649-2657. PubMed ID: 27673336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries.
    Ma T; Liu L; Wang J; Lu Y; Chen J
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11533-11539. PubMed ID: 32297392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.