These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 37700694)

  • 1. Plasma Parameters During Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) in the Presence of Nanoparticle-Protein Conjugates.
    Dell'Aglio M; Mallardi A; Gaudiuso R; Giacomo A
    Appl Spectrosc; 2023 Nov; 77(11):1253-1263. PubMed ID: 37700694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing nanoparticle-protein corona using nanoparticle enhanced Laser Induced Breakdown Spectroscopy signal enhancement.
    Dell'Aglio M; Salajková Z; Mallardi A; Sportelli MC; Kaiser J; Cioffi N; De Giacomo A
    Talanta; 2021 Dec; 235():122741. PubMed ID: 34517609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing biomarker detection sensitivity through tag-laser induced breakdown spectroscopy with NELIBS.
    Safi A; Landis JE; Adler HG; Khadem H; Eseller KE; Markushin Y; Honarparvaran S; De Giacomo A; Melikechi N
    Talanta; 2024 May; 271():125723. PubMed ID: 38295442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle Enhanced Laser-Induced Breakdown Spectroscopy for Microdrop Analysis at subppm Level.
    De Giacomo A; Koral C; Valenza G; Gaudiuso R; Dell'Aglio M
    Anal Chem; 2016 May; 88(10):5251-7. PubMed ID: 27109702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the noninvasive analysis of transparent samples and gemstones.
    Koral C; Dell'Aglio M; Gaudiuso R; Alrifai R; Torelli M; De Giacomo A
    Talanta; 2018 May; 182():253-258. PubMed ID: 29501149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-induced breakdown spectroscopy as a novel readout method for nanoparticle-based immunoassays.
    Modlitbová P; Farka Z; Pastucha M; Pořízka P; Novotný K; Skládal P; Kaiser J
    Mikrochim Acta; 2019 Aug; 186(9):629. PubMed ID: 31418079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples.
    De Giacomo A; Gaudiuso R; Koral C; Dell'Aglio M; De Pascale O
    Anal Chem; 2013 Nov; 85(21):10180-7. PubMed ID: 24090397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles.
    Selva Sharma A; Ilanchelian M
    J Phys Chem B; 2015 Jul; 119(30):9461-76. PubMed ID: 26106942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity and stability improvement on slippery surface-aggregated substrate for trace heavy metals detection using NELIBS.
    Xiao S; Liu Y; Luo Y; Zhu Y; Wang W; Nie J; Huang W; Niu C; Gong A; Guo L
    Talanta; 2024 Aug; 275():126001. PubMed ID: 38642545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of cement raw materials based on nanoparticle-enhanced laser-induced breakdown spectroscopy.
    Cai Y; Ma X; Ju D; Wang X
    Anal Methods; 2024 Jul; 16(27):4599-4606. PubMed ID: 38920112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
    Fleischer CC; Payne CK
    Acc Chem Res; 2014 Aug; 47(8):2651-9. PubMed ID: 25014679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid evaluation of gold nanoparticle-lipid membrane interactions using a lipid/polydiacetylene vesicle sensor.
    Gu C; Geng Y; Zheng F; Rotello VM
    Analyst; 2020 Apr; 145(8):3049-3055. PubMed ID: 32140698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple spectroscopic determination of the hard protein corona composition in AuNPs: albumin at 75.
    Vitali M; Casals E; Canals F; Colomé N; Puntes V
    Nanoscale; 2020 Aug; 12(29):15832-15844. PubMed ID: 32692793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties.
    Liu R; Jiang W; Walkey CD; Chan WC; Cohen Y
    Nanoscale; 2015 Jun; 7(21):9664-75. PubMed ID: 25959034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of protein corona composition of gold nanoparticles following plasmonic heating.
    Mahmoudi M; Lohse SE; Murphy CJ; Fathizadeh A; Montazeri A; Suslick KS
    Nano Lett; 2014 Jan; 14(1):6-12. PubMed ID: 24328336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Conformational Changes in Human Serum Albumin and Its Interactions with Gold Nanorods: Do Flexible Regions Play a Role in Corona Formation?
    Halder K; Sengupta P; Chaki S; Saha R; Dasgupta S
    Langmuir; 2023 Jan; 39(4):1651-1664. PubMed ID: 36635089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen - a newly discovered major player in protein corona formation on nanoparticles.
    Upreti T; Wolfe KM; Van Bavel N; Anikovskiy M; Labouta HI
    Phys Chem Chem Phys; 2022 Mar; 24(9):5610-5617. PubMed ID: 35175258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints.
    Afantitis A; Melagraki G; Tsoumanis A; Valsami-Jones E; Lynch I
    Nanotoxicology; 2018 Dec; 12(10):1148-1165. PubMed ID: 30182778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the binding affinity of plasma proteins adsorbed on Au nanoparticles.
    Zhang X; Zhang J; Zhang F; Yu S
    Nanoscale; 2017 Apr; 9(14):4787-4792. PubMed ID: 28345718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.