These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3770112)

  • 1. The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina.
    Shou T; Ruan D; Zhou Y
    Exp Brain Res; 1986; 64(1):233-6. PubMed ID: 3770112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat.
    Soodak RE; Shapley RM; Kaplan E
    J Neurophysiol; 1987 Aug; 58(2):267-75. PubMed ID: 3655866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of strabismus on responsivity, spatial resolution, and contrast sensitivity of cat lateral geniculate neurons.
    Jones KR; Kalil RE; Spear PD
    J Neurophysiol; 1984 Sep; 52(3):538-52. PubMed ID: 6481443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat.
    Bullier J; Norton TT
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):274-91. PubMed ID: 219159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between preferred orientation and receptive field position of neurons in extrastriate cortex (area 19) in the cat.
    Leventhal AG; Schall JD; Wallace W
    J Comp Neurol; 1984 Jan; 222(3):445-51. PubMed ID: 6699212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18.
    Vidyasagar TR; Urbas JV
    Exp Brain Res; 1982; 46(2):157-69. PubMed ID: 7095028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the Dynamics of Orientation Tuning and Spatiotemporal Receptive Field Structures of Cat LGN Neurons.
    Li H; Fang Q; Ge Y; Li Z; Meng J; Zhu J; Yu H
    Neuroscience; 2018 May; 377():26-39. PubMed ID: 29481999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geniculate orientation biases seen with moving sine wave gratings: implications for a model of simple cell afferent connectivity.
    Vidyasagar TR; Heide W
    Exp Brain Res; 1984; 57(1):176-200. PubMed ID: 6519225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between preferred orientation and receptive field position of neurons in cat striate cortex.
    Leventhal AG
    J Comp Neurol; 1983 Nov; 220(4):476-83. PubMed ID: 6643740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus.
    Suresh V; Çiftçioğlu UM; Wang X; Lala BM; Ding KR; Smith WA; Sommer FT; Hirsch JA
    J Neurosci; 2016 Oct; 36(43):10949-10963. PubMed ID: 27798177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional sign of reorganization in the visual system of adult cats: lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina.
    Eysel UT; Gonzalez-Aguilar F; Mayer U
    Brain Res; 1980 Jan; 181(2):285-300. PubMed ID: 7350967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Topographic relationship of orientation sensitive relay cells in lateral geniculate nucleus (LGN) of dark-reared cats].
    Zhou YF; Shou TD
    Sheng Li Xue Bao; 1996 Apr; 48(2):195-8. PubMed ID: 9389173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2558-72. PubMed ID: 8747214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats.
    Daniels JD; Norman JL; Pettigrew JD
    Exp Brain Res; 1977 Aug; 29(2):155-72. PubMed ID: 913513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptive field properties and latencies of cells in the lateral geniculate nucleus of the North American opossum (Didelphis virginiana).
    Kirby MA; Wilson PD
    J Neurophysiol; 1986 Oct; 56(4):907-33. PubMed ID: 3097274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual receptive-field properties of cells in area 18 of cat's cerebral cortex before and after acute lesions in area 17.
    Dreher B; Cottee LJ
    J Neurophysiol; 1975 Jul; 38(4):735-50. PubMed ID: 1159462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The receptive field organization of X-cells in the cat: spatiotemporal coupling and asymmetry.
    Dawis S; Shapley R; Kaplan E; Tranchina D
    Vision Res; 1984; 24(6):549-64. PubMed ID: 6740975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns.
    DeBruyn EJ; Casagrande VA; Beck PD; Bonds AB
    J Neurophysiol; 1993 Jan; 69(1):3-18. PubMed ID: 8381862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2548-57. PubMed ID: 8747213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.