These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37701209)
1. Use of cellulose microfibers from olive pomace to reinforce green composites for sustainable packaging applications. Amara C; El Mahdi A; Akman PK; Medimagh R; Tornuk F; Khwaldia K Food Sci Nutr; 2023 Sep; 11(9):5102-5113. PubMed ID: 37701209 [TBL] [Abstract][Full Text] [Related]
2. Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). Khalili H; Bahloul A; Ablouh EH; Sehaqui H; Kassab Z; Semlali Aouragh Hassani FZ; El Achaby M Int J Biol Macromol; 2023 Jan; 226():345-356. PubMed ID: 36470435 [TBL] [Abstract][Full Text] [Related]
3. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901 [TBL] [Abstract][Full Text] [Related]
4. Development of eco-friendly biofilms by utilizing microcrystalline cellulose extract from banana pseudo-stem. Sachcha IH; Paddar K; Minar MM; Rahman L; Hasan SMK; Akhtaruzzaman M; Billah MT; Yasmin S Heliyon; 2024 Apr; 10(7):e29070. PubMed ID: 38623235 [TBL] [Abstract][Full Text] [Related]
5. Development of a novel sandwich-structured composite from biopolymers and cellulose microfibers for building envelope applications. Dadras Chomachayi M; Blanchet P; Hussain A; Pepin S Sci Rep; 2023 Dec; 13(1):21955. PubMed ID: 38082144 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Li H; Shi H; He Y; Fei X; Peng L Int J Biol Macromol; 2020 Dec; 164():4104-4112. PubMed ID: 32898536 [TBL] [Abstract][Full Text] [Related]
7. Effect of carboxymethyl cellulose concentration on mechanical and water vapor barrier properties of corn starch films. Tavares KM; Campos A; Luchesi BR; Resende AA; Oliveira JE; Marconcini JM Carbohydr Polym; 2020 Oct; 246():116521. PubMed ID: 32747230 [TBL] [Abstract][Full Text] [Related]
9. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties. Naidu DS; John MJ Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367 [TBL] [Abstract][Full Text] [Related]
10. Effect of Bay Leaves Essential Oil Concentration on the Properties of Biodegradable Carboxymethyl Cellulose-Based Edible Films. Rincón E; Serrano L; Balu AM; Aguilar JJ; Luque R; García A Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31344962 [TBL] [Abstract][Full Text] [Related]
11. Development of biodegradable packaging films from carboxymethyl cellulose and oxidised natural rubber latex. Viswanathan VP; Kulandhaivelu SV; Manivasakan K; Ramakrishnan R Int J Biol Macromol; 2024 Mar; 262(Pt 1):129980. PubMed ID: 38340932 [TBL] [Abstract][Full Text] [Related]
12. Novel natural composite films as packaging materials with enhanced properties. Mohamed SAA; El-Sakhawy M; Nashy EHA; Othman AM Int J Biol Macromol; 2019 Sep; 136():774-784. PubMed ID: 31226378 [TBL] [Abstract][Full Text] [Related]
13. Bio-nanocomposite active packaging films based on carboxymethyl cellulose, myrrh gum, TiO Eshaghi R; Mohsenzadeh M; Ayala-Zavala JF Int J Biol Macromol; 2024 Apr; 263(Pt 2):129991. PubMed ID: 38331078 [TBL] [Abstract][Full Text] [Related]
14. Preparation and properties of cellulose/Thespesia lampas microfiber composite films. B A; K OR; Feng H; A VR Int J Biol Macromol; 2019 Apr; 127():153-158. PubMed ID: 30639652 [TBL] [Abstract][Full Text] [Related]
15. Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film. Sánchez-Gutiérrez M; Bascón-Villegas I; Espinosa E; Carrasco E; Pérez-Rodríguez F; Rodríguez A Foods; 2021 Jul; 10(7):. PubMed ID: 34359453 [TBL] [Abstract][Full Text] [Related]
16. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH J Agric Food Chem; 2010 Mar; 58(6):3753-60. PubMed ID: 20187652 [TBL] [Abstract][Full Text] [Related]
17. Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. Tibolla H; Czaikoski A; Pelissari FM; Menegalli FC; Cunha RL Int J Biol Macromol; 2020 Oct; 161():132-146. PubMed ID: 32522543 [TBL] [Abstract][Full Text] [Related]
18. Process-structure-property relationships of cellulose nanocrystals derived from Juncus effusus stems on ҡ-carrageenan-based bio-nanocomposite films. Kassab Z; Daoudi H; Salim MH; El Idrissi El Hassani C; Abdellaoui Y; El Achaby M Int J Biol Macromol; 2024 Apr; 265(Pt 2):130892. PubMed ID: 38513904 [TBL] [Abstract][Full Text] [Related]
19. Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. Wang X; Guo C; Hao W; Ullah N; Chen L; Li Z; Feng X Int J Biol Macromol; 2018 Oct; 118(Pt A):722-730. PubMed ID: 29944938 [TBL] [Abstract][Full Text] [Related]
20. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose. Qi XM; Liu SY; Chu FB; Pang S; Liang YR; Guan Y; Peng F; Sun RC Materials (Basel); 2015 Dec; 9(1):. PubMed ID: 28787804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]