BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37701756)

  • 1. Estimating effective reproduction number revisited.
    Koyama S
    Infect Dis Model; 2023 Dec; 8(4):1063-1078. PubMed ID: 37701756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accounting for the Potential of Overdispersion in Estimation of the Time-varying Reproduction Number.
    Ho F; Parag KV; Adam DC; Lau EHY; Cowling BJ; Tsang TK
    Epidemiology; 2023 Mar; 34(2):201-205. PubMed ID: 36722802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number.
    Gressani O; Wallinga J; Althaus CL; Hens N; Faes C
    PLoS Comput Biol; 2022 Oct; 18(10):e1010618. PubMed ID: 36215319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data.
    Chowell G; Nishiura H; Bettencourt LM
    J R Soc Interface; 2007 Feb; 4(12):155-66. PubMed ID: 17254982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multivariate statistical approach to predict COVID-19 count data with epidemiological interpretation and uncertainty quantification.
    Bartolucci F; Pennoni F; Mira A
    Stat Med; 2021 Oct; 40(24):5351-5372. PubMed ID: 34374438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data.
    Gressani O; Faes C; Hens N
    Biom J; 2023 Aug; 65(6):e2200024. PubMed ID: 36639234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering and improved Uncertainty Quantification in the dynamic estimation of effective reproduction numbers.
    Capistrán MA; Capella A; Christen JA
    Epidemics; 2022 Sep; 40():100624. PubMed ID: 36075125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks.
    Nishiura H; Yan P; Sleeman CK; Mode CJ
    J Theor Biol; 2012 Feb; 294():48-55. PubMed ID: 22079419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study.
    Roosa K; Luo R; Chowell G
    Math Biosci Eng; 2019 May; 16(5):4299-4313. PubMed ID: 31499663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks.
    Obadia T; Haneef R; Boëlle PY
    BMC Med Inform Decis Mak; 2012 Dec; 12():147. PubMed ID: 23249562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disease momentum: Estimating the reproduction number in the presence of superspreading.
    Johnson KD; Beiglböck M; Eder M; Grass A; Hermisson J; Pammer G; Polechová J; Toneian D; Wölfl B
    Infect Dis Model; 2021; 6():706-728. PubMed ID: 33824936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum entropy method for estimating the reproduction number: An investigation for COVID-19 in China and the United States.
    Tao Y
    Phys Rev E; 2020 Sep; 102(3-1):032136. PubMed ID: 33075950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-negative binomial nonlinear spatio-temporal random effects modeling of COVID-19 case counts in Japan.
    Ueki M
    J Appl Stat; 2023; 50(7):1650-1663. PubMed ID: 37197760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early real-time estimation of the basic reproduction number of emerging or reemerging infectious diseases in a community with heterogeneous contact pattern: Using data from Hong Kong 2009 H1N1 Pandemic Influenza as an illustrative example.
    Kwok KO; Davoudi B; Riley S; Pourbohloul B
    PLoS One; 2015; 10(9):e0137959. PubMed ID: 26372219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling overdispersion and Markovian features in count data.
    Trocóniz IF; Plan EL; Miller R; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2009 Oct; 36(5):461-77. PubMed ID: 19798550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating overdispersion in sparse multinomial data.
    Afroz F; Parry M; Fletcher D
    Biometrics; 2020 Sep; 76(3):834-842. PubMed ID: 31785150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the effective reproduction number for heterogeneous models using incidence data.
    Jorge DCP; Oliveira JF; Miranda JGV; Andrade RFS; Pinho STR
    R Soc Open Sci; 2022 Sep; 9(9):220005. PubMed ID: 36133147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the accuracy of dose estimates from automatically scored dicentric chromosomes by accounting for chromosome number.
    Endesfelder D; Kulka U; Einbeck J; Oestreicher U
    Int J Radiat Biol; 2020 Dec; 96(12):1571-1584. PubMed ID: 33001765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anchoring the mean generation time in the SEIR to mitigate biases in ℜ
    Andrade J; Duggan J
    R Soc Open Sci; 2023 Aug; 10(8):230515. PubMed ID: 37538746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.