These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37701942)

  • 1. Sound processing in the cricket brain: evidence for a pulse duration filter.
    Zhang X; Hedwig B
    J Neurophysiol; 2023 Oct; 130(4):953-966. PubMed ID: 37701942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response properties of spiking and non-spiking brain neurons mirror pulse interval selectivity.
    Zhang X; Hedwig B
    Front Cell Neurosci; 2022; 16():1010740. PubMed ID: 36246524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
    Kostarakos K; Hedwig B
    J Neurosci; 2012 Jul; 32(28):9601-12. PubMed ID: 22787046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.
    Hedwig B; Sarmiento-Ponce EJ
    Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition.
    Hedwig BG
    Front Physiol; 2016; 7():46. PubMed ID: 26941647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An auditory-responsive interneuron descending from the cricket brain: a new element in the auditory pathway.
    Rogers SM; Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Nov; 208(5-6):571-589. PubMed ID: 36208310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.
    Zorović M; Hedwig B
    J Neurophysiol; 2011 May; 105(5):2181-94. PubMed ID: 21346206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system.
    Hedwig B; Poulet JF
    J Exp Biol; 2005 Mar; 208(Pt 5):915-27. PubMed ID: 15755890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An auditory feature detection circuit for sound pattern recognition.
    Schöneich S; Kostarakos K; Hedwig B
    Sci Adv; 2015 Sep; 1(8):e1500325. PubMed ID: 26601259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerant pattern recognition: evidence from phonotactic responses in the cricket
    Bent AM; Hedwig B
    Proc Biol Sci; 2021 Dec; 288(1965):20211889. PubMed ID: 34905710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern recognition in field crickets: concepts and neural evidence.
    Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jan; 201(1):73-85. PubMed ID: 25348550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex auditory behaviour emerges from simple reactive steering.
    Hedwig B; Poulet JF
    Nature; 2004 Aug; 430(7001):781-5. PubMed ID: 15306810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking.
    Zorović M; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jan; 199(1):25-34. PubMed ID: 23104703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory orientation in crickets: pattern recognition controls reactive steering.
    Poulet JF; Hedwig B
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15665-9. PubMed ID: 16227440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket.
    Lv M; Zhang X; Hedwig B
    J Neurophysiol; 2020 Mar; 123(3):865-875. PubMed ID: 31913780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Perception and selectivity of sound duration in the central auditory midbrain].
    Wang X; Li AA; Wu FJ
    Sheng Li Xue Bao; 2010 Aug; 62(4):309-16. PubMed ID: 20717631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular timer networks: abdominal interneurons controlling the chirp and pulse pattern in a cricket calling song.
    Jacob PF; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Nov; 206(6):921-938. PubMed ID: 33089402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets.
    Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jul; 192(7):677-89. PubMed ID: 16523340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.