BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37701942)

  • 1. Sound processing in the cricket brain: evidence for a pulse duration filter.
    Zhang X; Hedwig B
    J Neurophysiol; 2023 Oct; 130(4):953-966. PubMed ID: 37701942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response properties of spiking and non-spiking brain neurons mirror pulse interval selectivity.
    Zhang X; Hedwig B
    Front Cell Neurosci; 2022; 16():1010740. PubMed ID: 36246524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
    Kostarakos K; Hedwig B
    J Neurosci; 2012 Jul; 32(28):9601-12. PubMed ID: 22787046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.
    Hedwig B; Sarmiento-Ponce EJ
    Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition.
    Hedwig BG
    Front Physiol; 2016; 7():46. PubMed ID: 26941647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An auditory-responsive interneuron descending from the cricket brain: a new element in the auditory pathway.
    Rogers SM; Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Nov; 208(5-6):571-589. PubMed ID: 36208310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.
    Zorović M; Hedwig B
    J Neurophysiol; 2011 May; 105(5):2181-94. PubMed ID: 21346206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system.
    Hedwig B; Poulet JF
    J Exp Biol; 2005 Mar; 208(Pt 5):915-27. PubMed ID: 15755890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An auditory feature detection circuit for sound pattern recognition.
    Schöneich S; Kostarakos K; Hedwig B
    Sci Adv; 2015 Sep; 1(8):e1500325. PubMed ID: 26601259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerant pattern recognition: evidence from phonotactic responses in the cricket
    Bent AM; Hedwig B
    Proc Biol Sci; 2021 Dec; 288(1965):20211889. PubMed ID: 34905710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern recognition in field crickets: concepts and neural evidence.
    Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jan; 201(1):73-85. PubMed ID: 25348550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex auditory behaviour emerges from simple reactive steering.
    Hedwig B; Poulet JF
    Nature; 2004 Aug; 430(7001):781-5. PubMed ID: 15306810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking.
    Zorović M; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jan; 199(1):25-34. PubMed ID: 23104703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory orientation in crickets: pattern recognition controls reactive steering.
    Poulet JF; Hedwig B
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15665-9. PubMed ID: 16227440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket.
    Lv M; Zhang X; Hedwig B
    J Neurophysiol; 2020 Mar; 123(3):865-875. PubMed ID: 31913780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Perception and selectivity of sound duration in the central auditory midbrain].
    Wang X; Li AA; Wu FJ
    Sheng Li Xue Bao; 2010 Aug; 62(4):309-16. PubMed ID: 20717631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular timer networks: abdominal interneurons controlling the chirp and pulse pattern in a cricket calling song.
    Jacob PF; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Nov; 206(6):921-938. PubMed ID: 33089402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets.
    Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jul; 192(7):677-89. PubMed ID: 16523340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.