These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37701952)

  • 1. Multisensory cues for walking in virtual reality: humans combine conflicting visual and self-motion information to reproduce distances.
    Kopiske K; Heinrich EM; Jahn G; Bendixen A; Einhäuser W
    J Neurophysiol; 2023 Oct; 130(4):1028-1040. PubMed ID: 37701952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking.
    Saunders JA
    J Vis; 2014 Mar; 14(3):24. PubMed ID: 24648194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?
    Riecke BE; Freiberg JB; Grechkin TY
    J Vis; 2015 Feb; 15(2):. PubMed ID: 25761342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaze direction affects walking speed when using a self-paced treadmill with a virtual reality environment.
    Jeschke AM; de Groot LE; van der Woude LHV; Oude Lansink ILB; van Kouwenhove L; Hijmans JM
    Hum Mov Sci; 2019 Oct; 67():102498. PubMed ID: 31330475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisensory integration in the estimation of walked distances.
    Campos JL; Butler JS; Bülthoff HH
    Exp Brain Res; 2012 May; 218(4):551-65. PubMed ID: 22411581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual capture of gait during redirected walking.
    Rothacher Y; Nguyen A; Lenggenhager B; Kunz A; Brugger P
    Sci Rep; 2018 Dec; 8(1):17974. PubMed ID: 30568182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring egocentric distance perception in virtual reality: Influence of methodologies, locomotion and translation gains.
    Maruhn P; Schneider S; Bengler K
    PLoS One; 2019; 14(10):e0224651. PubMed ID: 31671138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Speed Modulations Are Proportional to Grades of Virtual Visual Slopes-A Virtual Reality Study.
    Benady A; Zadik S; Zeilig G; Gilaie-Dotan S; Plotnik M
    Front Neurol; 2021; 12():615242. PubMed ID: 34512493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining cues to judge distance and direction in an immersive virtual reality environment.
    Scarfe P; Glennerster A
    J Vis; 2021 Apr; 21(4):10. PubMed ID: 33900366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viewpoint oscillation improves the perception of distance travelled in static observers but not during treadmill walking.
    Bossard M; Goulon C; Mestre D
    Exp Brain Res; 2020 Apr; 238(4):1073-1083. PubMed ID: 32211928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual estimation of travel distance during walking.
    Lappe M; Frenz H
    Exp Brain Res; 2009 Dec; 199(3-4):369-75. PubMed ID: 19533107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slipping while counting: gaze-gait interactions during perturbed walking under dual-task conditions.
    Müller C; Baumann T; Einhäuser W; Kopiske K
    Exp Brain Res; 2023 Mar; 241(3):765-780. PubMed ID: 36725725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serial dependencies between locomotion and visual space.
    Wiesing M; Zimmermann E
    Sci Rep; 2023 Feb; 13(1):3302. PubMed ID: 36849556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using virtual reality to assess dynamic self-motion and landmark cues for spatial updating in children and adults.
    Barhorst-Cates EM; Stoker J; Stefanucci JK; Creem-Regehr SH
    Mem Cognit; 2021 Apr; 49(3):572-585. PubMed ID: 33108632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attuning one's steps to visual targets reduces comfortable walking speed in both young and older adults.
    Peper CL; de Dreu MJ; Roerdink M
    Gait Posture; 2015 Mar; 41(3):830-4. PubMed ID: 25800002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of virtual reality on gait variability.
    Katsavelis D; Mukherjee M; Decker L; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2010 Jul; 14(3):239-56. PubMed ID: 20587300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fixed and self-paced treadmill walking for able-bodied and transtibial amputees in a multi-terrain virtual environment.
    Sinitski EH; Lemaire ED; Baddour N; Besemann M; Dudek NL; Hebert JS
    Gait Posture; 2015 Feb; 41(2):568-73. PubMed ID: 25661003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual oscillation effects on dynamic balance control in people with multiple sclerosis.
    Riem L; Beardsley SA; Obeidat AZ; Schmit BD
    J Neuroeng Rehabil; 2022 Aug; 19(1):90. PubMed ID: 35978431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual distance estimation in static compared to moving virtual scenes.
    Frenz H; Lappe M
    Span J Psychol; 2006 Nov; 9(2):321-31. PubMed ID: 17120711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Framework for the Continuous Evaluation of 3D Motion Perception in Virtual Reality.
    Soans RS; Renken RJ; Saxena R; Tandon R; Cornelissen FW; Gandhi TK
    IEEE Trans Biomed Eng; 2023 Oct; 70(10):2933-2942. PubMed ID: 37104106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.