These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3770201)

  • 1. Donor and acceptor splice signals within an exon of the human fibronectin gene: a new type of differential splicing.
    Vibe-Pedersen K; Magnusson S; Baralle FE
    FEBS Lett; 1986 Oct; 207(2):287-91. PubMed ID: 3770201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the fibronectin gene. Exon structure of cell attachment domain.
    Oldberg A; Ruoslahti E
    J Biol Chem; 1986 Feb; 261(5):2113-6. PubMed ID: 3003095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel exonic elements that modulate splicing of the human fibronectin EDA exon.
    Staffa A; Acheson NH; Cochrane A
    J Biol Chem; 1997 Dec; 272(52):33394-401. PubMed ID: 9407134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro splicing of fibronectin pre-mRNAs.
    Norton PA; Hynes RO
    Nucleic Acids Res; 1990 Jul; 18(14):4089-97. PubMed ID: 2377454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition.
    Amit M; Donyo M; Hollander D; Goren A; Kim E; Gelfman S; Lev-Maor G; Burstein D; Schwartz S; Postolsky B; Pupko T; Ast G
    Cell Rep; 2012 May; 1(5):543-56. PubMed ID: 22832277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.
    Clark F; Thanaraj TA
    Hum Mol Genet; 2002 Feb; 11(4):451-64. PubMed ID: 11854178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription vectors that facilitate the identification and mapping of RNA splice sites in genomic DNA.
    Reilly JD; Melhem RF; Lutz CM; Edmonds M
    DNA Cell Biol; 1990 Sep; 9(7):535-42. PubMed ID: 2222814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exon sequence TAGG can inhibit splicing.
    Del Gatto F; Gesnel MC; Breathnach R
    Nucleic Acids Res; 1996 Jun; 24(11):2017-21. PubMed ID: 8668531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate selection of a 5' splice site requires sequences within fibronectin alternative exon B.
    Kuo BA; Norton PA
    Nucleic Acids Res; 1999 Oct; 27(19):3945-52. PubMed ID: 10481035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for exon sequences in alternative splicing of the human fibronectin gene.
    Mardon HJ; Sebastio G; Baralle FE
    Nucleic Acids Res; 1987 Oct; 15(19):7725-33. PubMed ID: 3671064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple sites of alternative splicing of the rat fibronectin gene transcript.
    Schwarzbauer JE; Patel RS; Fonda D; Hynes RO
    EMBO J; 1987 Sep; 6(9):2573-80. PubMed ID: 2445560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon.
    Caputi M; Casari G; Guenzi S; Tagliabue R; Sidoli A; Melo CA; Baralle FE
    Nucleic Acids Res; 1994 Mar; 22(6):1018-22. PubMed ID: 8152907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations which alter splicing in the human hypoxanthine-guanine phosphoribosyltransferase gene.
    Steingrimsdottir H; Rowley G; Dorado G; Cole J; Lehmann AR
    Nucleic Acids Res; 1992 Mar; 20(6):1201-8. PubMed ID: 1373235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elements regulating an alternatively spliced exon of the rat fibronectin gene.
    Huh GS; Hynes RO
    Mol Cell Biol; 1993 Sep; 13(9):5301-14. PubMed ID: 8355683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames.
    Solovyev VV; Salamov AA; Lawrence CB
    Nucleic Acids Res; 1994 Dec; 22(24):5156-63. PubMed ID: 7816600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel cryptic exon in intron 2 of the human dystrophin gene evolved from an intron by acquiring consensus sequences for splicing at different stages of anthropoid evolution.
    Dwi Pramono ZA; Takeshima Y; Surono A; Ishida T; Matsuo M
    Biochem Biophys Res Commun; 2000 Jan; 267(1):321-8. PubMed ID: 10623618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.