These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 3770237)

  • 1. Seasonal variations in the circadian activity of acetylcholinesterase (AChE, EC 3.1.1.7) in the brain stem reticular formation of the mouse in constant darkness.
    Lewandowski MH
    Folia Biol (Krakow); 1986; 34(2):187-98. PubMed ID: 3770237
    [No Abstract]   [Full Text] [Related]  

  • 2. Seasonal differences in circadian acetylcholinesterase activity in the brain stem reticular formation of the mouse.
    Lewandowski M
    Folia Biol (Krakow); 1983; 31(4):373-9. PubMed ID: 6667750
    [No Abstract]   [Full Text] [Related]  

  • 3. Circadian changes of acetylcholinesterase activity in the reticular formation of the mouse brain under the influence of different light conditions, with reference to locomotor activity.
    Lewandowski M
    Folia Biol (Krakow); 1983; 31(1):53-64. PubMed ID: 6884546
    [No Abstract]   [Full Text] [Related]  

  • 4. Seasonal variations in the circadian activity of AChE in the brain stem reticular formation of mice under normal and constant light regimens.
    Lewandowski MH
    Chronobiol Int; 1988; 5(2):121-5. PubMed ID: 3401977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of lithium on circadian activity of AChE (EC 3.1.1.7) in the reticular formation of mouse brain stem under LD 12:12.
    Lewandowski MH; Mardyła E
    Chronobiologia; 1987; 14(4):395-401. PubMed ID: 3446450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholinesterase activity of the human lower brain stem with special regard to the reticular formation.
    Papp M
    Acta Morphol Acad Sci Hung; 1968; 16(4):375-90. PubMed ID: 5721192
    [No Abstract]   [Full Text] [Related]  

  • 7. The behaviour of acetylcholinesterase activity in neurons of the bulbous part of the reticular formation in albino rats after bilateral vagotomy.
    Krzysztofowicz I; Rzeszowska G; Tokarski J
    Gegenbaurs Morphol Jahrb; 1976; 122(6):953-60. PubMed ID: 1021519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Acetylcholinesterase localization in the nuclei of the reticular formation of the cat rhombencephalon].
    Burchyns'ka LF; Koval' LM
    Fiziol Zh; 1975; 21(4):486-93. PubMed ID: 1218643
    [No Abstract]   [Full Text] [Related]  

  • 9. Sleep and activity: their relation to the 24-hour clock.
    Richter CP
    Res Publ Assoc Res Nerv Ment Dis; 1967; 45():8-29. PubMed ID: 6083201
    [No Abstract]   [Full Text] [Related]  

  • 10. Impact of scorpion Heterometrus fulvipes venom on cholinesterase rhythmicity in the tropical mouse Mus booduga.
    Narayana Reddy BS; Maniraj Bhaskar L; Babu KS
    Indian J Physiol Pharmacol; 1984; 28(1):47-52. PubMed ID: 6490130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhythms of immunity.
    Płytycz B; Seljelid R
    Arch Immunol Ther Exp (Warsz); 1997; 45(2-3):157-62. PubMed ID: 9597081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Acetylcholinesterase activity in the caudal regions of the medulla oblongata].
    Raĭgorodskaia TG
    Biull Eksp Biol Med; 1970 Jun; 69(6):102-6. PubMed ID: 5471705
    [No Abstract]   [Full Text] [Related]  

  • 13. Seasonal changes in the circadian activity rhythm of light-dark (LD) and completely dark (DD) regimen in the mouse submandibular gland in the presence of light-dark (LD) and completely dark (DD) regimen.
    Lityńska A
    Physiol Bohemoslov; 1984; 33(5):447-56. PubMed ID: 6542239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delivery of human acetylcholinesterase by adeno-associated virus to the acetylcholinesterase knockout mouse.
    Hrabovska A; Duysen EG; Sanders JD; Murrin LC; Lockridge O
    Chem Biol Interact; 2005 Dec; 157-158():71-8. PubMed ID: 16243306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate.
    Cayetanot F; Van Someren EJ; Perret M; Aujard F
    J Biol Rhythms; 2005 Oct; 20(5):461-9. PubMed ID: 16267385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circannual variations of circadian periodicity in murine colony-forming cells.
    Aardal NP
    Exp Hematol; 1984 Jan; 12(1):61-7. PubMed ID: 6698130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal modulation of the 8-and 24-hour rhythms of ondansetron tolerance in mice.
    Khedhaier A; Ben-Attia M; Gadacha W; Sani M; Reinberg A; Boughattas NA
    Chronobiol Int; 2007; 24(6):1199-212. PubMed ID: 18075807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.
    Camp S; Zhang L; Marquez M; de la Torre B; Long JM; Bucht G; Taylor P
    Chem Biol Interact; 2005 Dec; 157-158():79-86. PubMed ID: 16289062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromedin-U is regulated by the circadian clock in the SCN of the mouse.
    Graham ES; Littlewood P; Turnbull Y; Mercer JG; Morgan PJ; Barrett P
    Eur J Neurosci; 2005 Feb; 21(3):814-9. PubMed ID: 15733101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian variations of acetylcholine esterase (E.C.3.1.1.7) in rat brains.
    Schiebeler H; von Mayersbach H
    Int J Chronobiol; 1974; 2(3):281-9. PubMed ID: 4443128
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.