These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37702376)

  • 1. Nitrogen Reduction Reaction to Ammonia on Transition Metal Carbide Catalysts.
    Ellingsson V; Iqbal A; Skúlason E; Abghoui Y
    ChemSusChem; 2023 Nov; 16(22):e202300947. PubMed ID: 37702376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions.
    Wang D; Azofra LM; Harb M; Cavallo L; Zhang X; Suryanto BHR; MacFarlane DR
    ChemSusChem; 2018 Oct; 11(19):3416-3422. PubMed ID: 30091299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient metal-free borocarbonitride catalysts for electrochemical reduction of N
    Shi L; Bi S; Qi Y; Ning G; Ye J
    J Colloid Interface Sci; 2023 Jul; 641():577-584. PubMed ID: 36963251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advancement in the electrocatalytic synthesis of ammonia.
    Wen X; Guan J
    Nanoscale; 2020 Apr; 12(15):8065-8094. PubMed ID: 32253416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions.
    Zhao S; Lu X; Wang L; Gale J; Amal R
    Adv Mater; 2019 Mar; 31(13):e1805367. PubMed ID: 30648293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical N
    Sahoo SK; Heske J; Antonietti M; Qin Q; Oschatz M; Kühne TD
    ACS Appl Energy Mater; 2020 Oct; 3(10):10061-10069. PubMed ID: 33134880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia.
    Majumder M; Saini H; Dědek I; Schneemann A; Chodankar NR; Ramarao V; Santosh MS; Nanjundan AK; Kment Š; Dubal D; Otyepka M; Zbořil R; Jayaramulu K
    ACS Nano; 2021 Nov; 15(11):17275-17298. PubMed ID: 34751563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-metal-based Catalysts for Electrochemical Synthesis of Ammonia by Nitrogen Reduction Reaction: Advancing the Green Ammonia Economy.
    Akter R; Shah SS; Ehsan MA; Shaikh MN; Zahir MH; Aziz MA; Ahammad AJS
    Chem Asian J; 2023 Oct; ():e202300797. PubMed ID: 37812018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst.
    Qiu W; Xie XY; Qiu J; Fang WH; Liang R; Ren X; Ji X; Cui G; Asiri AM; Cui G; Tang B; Sun X
    Nat Commun; 2018 Aug; 9(1):3485. PubMed ID: 30154483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Electrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-Phase Interface.
    Wang H; Chen Y; Fan R; Chen J; Wang Z; Mao S; Wang Y
    Research (Wash D C); 2019; 2019():1401209. PubMed ID: 31912026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and reactivity of metal nanoclusters supported on transition metal carbides.
    Prats H; Stamatakis M
    Nanoscale Adv; 2023 Jun; 5(12):3214-3224. PubMed ID: 37325529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the Electrochemical Nitrogen Reduction on Molybdenum and Iron Carbides: Promising Catalysts or False Positives?
    Izelaar B; Ripepi D; Asperti S; Dugulan AI; Hendrikx RWA; Böttger AJ; Mulder FM; Kortlever R
    ACS Catal; 2023 Feb; 13(3):1649-1661. PubMed ID: 36776385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Doped Fe
    Chen X; Yin H; Yang X; Zhang W; Xiao D; Lu Z; Zhang Y; Zhang P
    Inorg Chem; 2022 Dec; 61(49):20123-20132. PubMed ID: 36441161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Noble-Metal-Free Catalysts for Electrocatalytic Synthesis of Ammonia under Ambient Conditions.
    Xiang Z; Li L; Wang Y; Song Y
    Chem Asian J; 2020 Jun; 15(12):1791-1807. PubMed ID: 32351021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Ru-N
    Han Z; Huang S; Zhang J; Wang F; Han S; Wu P; He M; Zhuang X
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13025-13032. PubMed ID: 36857306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency.
    Zhang C; Wang Z; Lei J; Ma L; Yakobson BI; Tour JM
    Small; 2022 Apr; 18(15):e2106327. PubMed ID: 35278039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic bimetallic CoFe
    Ahmed MI; Chen S; Ren W; Chen X; Zhao C
    Chem Commun (Camb); 2019 Oct; 55(81):12184-12187. PubMed ID: 31544195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.