These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 37702517)

  • 1. High-throughput functional trait testing for bacterial pathogens.
    Stromberg ZR; Phillips SMB; Omberg KM; Hess BM
    mSphere; 2023 Oct; 8(5):e0031523. PubMed ID: 37702517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotype-Based Threat Assessment.
    Yang J; Eslami M; Chen YP; Das M; Zhang D; Chen S; Roberts AJ; Weston M; Volkova A; Faghihi K; Moore RK; Alaniz RC; Wattam AR; Dickerman A; Cucinell C; Kendziorski J; Coburn S; Paterson H; Obanor O; Maples J; Servetas S; Dootz J; Qin QM; Samuel JE; Han A; van Schaik EJ; de Figueiredo P
    Proc Natl Acad Sci U S A; 2022 Apr; 119(14):e2112886119. PubMed ID: 35363569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic approaches to understanding bacterial virulence.
    Burrack LS; Higgins DE
    Curr Opin Microbiol; 2007 Feb; 10(1):4-9. PubMed ID: 17161645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forest and Trees: Exploring Bacterial Virulence with Genome-wide Association Studies and Machine Learning.
    Allen JP; Snitkin E; Pincus NB; Hauser AR
    Trends Microbiol; 2021 Jul; 29(7):621-633. PubMed ID: 33455849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial genomics and pathogen evolution.
    Raskin DM; Seshadri R; Pukatzki SU; Mekalanos JJ
    Cell; 2006 Feb; 124(4):703-14. PubMed ID: 16497582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput phenogenotyping
    Stanley S; Spaulding CN; Liu Q; Chase MR; Ha DTM; Thai PVK; Lan NH; Thu DDA; Quang NL; Brown J; Hicks ND; Wang X; Marin M; Howard NC; Vickers AJ; Karpinski WM; Chao MC; Farhat MR; Caws M; Dunstan SJ; Thuong NTT; Fortune SM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37090677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population-level virulence factors amongst pathogenic bacteria: relation to infection outcome.
    Hu FZ; Ehrlich GD
    Future Microbiol; 2008 Feb; 3(1):31-42. PubMed ID: 18230032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic perspectives on the evolution and spread of bacterial pathogens.
    Bentley SD; Parkhill J
    Proc Biol Sci; 2015 Dec; 282(1821):20150488. PubMed ID: 26702036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors.
    Merhej V; Georgiades K; Raoult D
    Brief Funct Genomics; 2013 Jul; 12(4):291-304. PubMed ID: 23814139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of virulence factors and antibiotic resistance markers using bacterial genomics.
    Bakour S; Sankar SA; Rathored J; Biagini P; Raoult D; Fournier PE
    Future Microbiol; 2016; 11(3):455-66. PubMed ID: 26974504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of primary metabolism by a virulence regulatory network promotes robustness in a plant pathogen.
    Peyraud R; Cottret L; Marmiesse L; Genin S
    Nat Commun; 2018 Jan; 9(1):418. PubMed ID: 29379078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Pathogen Genomic Differences That Impact Human Immune Response and Disease during Cryptococcus neoformans Infection.
    Gerstein AC; Jackson KM; McDonald TR; Wang Y; Lueck BD; Bohjanen S; Smith KD; Akampurira A; Meya DB; Xue C; Boulware DR; Nielsen K
    mBio; 2019 Jul; 10(4):. PubMed ID: 31311883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic.
    Balloux F; Brønstad Brynildsrud O; van Dorp L; Shaw LP; Chen H; Harris KA; Wang H; Eldholm V
    Trends Microbiol; 2018 Dec; 26(12):1035-1048. PubMed ID: 30193960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune subversion and quorum-sensing shape the variation in infectious dose among bacterial pathogens.
    Gama JA; Abby SS; Vieira-Silva S; Dionisio F; Rocha EP
    PLoS Pathog; 2012 Feb; 8(2):e1002503. PubMed ID: 22319444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial genetics and molecular pathogenesis in the age of high throughput DNA sequencing.
    Davey L; Valdivia RH
    Curr Opin Microbiol; 2020 Apr; 54():59-66. PubMed ID: 32044689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic Diversification of Microbial Pathogens-Cooperating and Preparing for the Future.
    Schröter L; Dersch P
    J Mol Biol; 2019 Nov; 431(23):4645-4655. PubMed ID: 31260693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking Long-Read Assemblers for Genomic Analyses of Bacterial Pathogens Using Oxford Nanopore Sequencing.
    Chen Z; Erickson DL; Meng J
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The association of virulence factors with genomic islands.
    Ho Sui SJ; Fedynak A; Hsiao WW; Langille MG; Brinkman FS
    PLoS One; 2009 Dec; 4(12):e8094. PubMed ID: 19956607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens.
    Busby B; Kristensen DM; Koonin EV
    Environ Microbiol; 2013 Feb; 15(2):307-12. PubMed ID: 23035931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Listeria monocytogenes virulence potential using whole genome sequencing and machine learning.
    Gmeiner A; Njage PMK; Hansen LT; Aarestrup FM; Leekitcharoenphon P
    Int J Food Microbiol; 2024 Jan; 410():110491. PubMed ID: 38000216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.