These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37702658)
1. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. Khatibi M; Dartoomi H; Ashrafizadeh SN Langmuir; 2023 Sep; 39(38):13717-13734. PubMed ID: 37702658 [TBL] [Abstract][Full Text] [Related]
2. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer. Dartoomi H; Khatibi M; Ashrafizadeh SN Langmuir; 2022 Aug; 38(33):10313-10330. PubMed ID: 35952366 [TBL] [Abstract][Full Text] [Related]
3. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis. Ouyang W; Wang W; Zhang H; Wu W; Li Z Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels. Dartoomi H; Khatibi M; Ashrafizadeh SN Anal Chem; 2023 Jan; 95(2):1522-1531. PubMed ID: 36537870 [TBL] [Abstract][Full Text] [Related]
5. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces. Khatibi M; Sadeghi A; Ashrafizadeh SN Phys Chem Chem Phys; 2021 Jan; 23(3):2211-2221. PubMed ID: 33439162 [TBL] [Abstract][Full Text] [Related]
7. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Karimzadeh M; Khatibi M; Ashrafizadeh SN; Mondal PK Phys Chem Chem Phys; 2022 Aug; 24(34):20303-20317. PubMed ID: 35979759 [TBL] [Abstract][Full Text] [Related]
8. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371 [TBL] [Abstract][Full Text] [Related]
9. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Xin W; Zhang Z; Huang X; Hu Y; Zhou T; Zhu C; Kong XY; Jiang L; Wen L Nat Commun; 2019 Aug; 10(1):3876. PubMed ID: 31462636 [TBL] [Abstract][Full Text] [Related]
10. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field. Khatibi M; Ashrafizadeh SN Anal Chem; 2023 Dec; 95(49):18188-18198. PubMed ID: 38019778 [TBL] [Abstract][Full Text] [Related]
11. High-performance ionic diode membrane for salinity gradient power generation. Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214 [TBL] [Abstract][Full Text] [Related]
12. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges. Liu X; Li X; Chu X; Zhang B; Zhang J; Hambsch M; Mannsfeld SCB; Borrelli M; Löffler M; Pohl D; Liu Y; Zhang Z; Feng X Adv Mater; 2024 May; 36(18):e2310791. PubMed ID: 38299804 [TBL] [Abstract][Full Text] [Related]
13. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion. Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875 [TBL] [Abstract][Full Text] [Related]
14. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776 [TBL] [Abstract][Full Text] [Related]
15. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR; Kwon C; Lee H; Kim S; Cho ES ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224 [TBL] [Abstract][Full Text] [Related]
16. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH Yao L; Li Q; Pan S; Cheng J; Liu X Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210 [TBL] [Abstract][Full Text] [Related]
17. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Heydari A; Khatibi M; Ashrafizadeh SN Phys Chem Chem Phys; 2023 Oct; 25(39):26716-26736. PubMed ID: 37779455 [TBL] [Abstract][Full Text] [Related]
18. Quantitative model for predicting the electroosmotic flow in dual-pole nanochannels. Khosravikia M Electrophoresis; 2023 Apr; 44(7-8):733-743. PubMed ID: 36808619 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. Nekoubin N; Sadeghi A; Chakraborty S Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764 [TBL] [Abstract][Full Text] [Related]
20. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. Tong X; Liu S; Crittenden J; Chen Y ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]