These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37702661)

  • 1. Induced UV photon sensing properties in narrow bandgap CdTe quantum dots through controlling hot electron dynamics.
    Thrupthika T; Nataraj D; Ramya S; Sangeetha A; Thangadurai TD
    Phys Chem Chem Phys; 2023 Sep; 25(37):25331-25343. PubMed ID: 37702661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.
    Maity P; Debnath T; Chopra U; Ghosh HN
    Nanoscale; 2015 Feb; 7(6):2698-707. PubMed ID: 25583154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-inorganic perovskite nanocrystal assisted extraction of hot electrons and biexcitons from photoexcited CdTe quantum dots.
    Mondal N; De A; Samanta A
    Nanoscale; 2018 Jan; 10(2):639-645. PubMed ID: 29238789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Quenching of Excitons in the Zn
    Cherepanov D; Kostrov A; Gostev F; Shelaev I; Motyakin M; Kochev S; Kabachii Y; Nadtochenko V
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thin CdSe shell boosts the electron transfer from CdTe quantum dots to methylene blue.
    Dworak L; Roth S; Scheffer MP; Frangakis AS; Wachtveitl J
    Nanoscale; 2018 Jan; 10(4):2162-2169. PubMed ID: 29327031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.
    Dong Y; Rossi D; Parobek D; Son DH
    Chemphyschem; 2016 Mar; 17(5):660-4. PubMed ID: 26807659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: Induced UV photon sensing properties in narrow bandgap CdTe quantum dots through controlling hot electron dynamics.
    Thrupthika T; Nataraj D; Ramya S; Sangeetha A; Thangadurai TD
    Phys Chem Chem Phys; 2023 Oct; 25(39):26929. PubMed ID: 37767545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Detection of Quantum Dot Hot Electrons Generated via a Mn
    Barrows CJ; Rinehart JD; Nagaoka H; deQuilettes DW; Salvador M; Chen JI; Ginger DS; Gamelin DR
    J Phys Chem Lett; 2017 Jan; 8(1):126-130. PubMed ID: 27966967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Trap to Electron Storage Center in Specially Aligned Mn-Doped CdSe d-Dot: A Step Forward in the Design of Higher Efficient Quantum-Dot Solar Cell.
    Debnath T; Maity P; Maiti S; Ghosh HN
    J Phys Chem Lett; 2014 Aug; 5(16):2836-42. PubMed ID: 26278087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge carrier dynamics in thiol capped CdTe quantum dots.
    Kaniyankandy S; Rawalekar S; Verma S; Palit DK; Ghosh HN
    Phys Chem Chem Phys; 2010 Apr; 12(16):4210-6. PubMed ID: 20379514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis.
    Dong Y; Choi J; Jeong HK; Son DH
    J Am Chem Soc; 2015 Apr; 137(16):5549-54. PubMed ID: 25860231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex.
    Morris-Cohen AJ; Frederick MT; Cass LC; Weiss EA
    J Am Chem Soc; 2011 Jul; 133(26):10146-54. PubMed ID: 21618976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion.
    Xu Z; Huang Z; Jin T; Lian T; Tang ML
    Acc Chem Res; 2021 Jan; 54(1):70-80. PubMed ID: 33141563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots.
    Grimaldi G; Geuchies JJ; van der Stam W; du Fossé I; Brynjarsson B; Kirkwood N; Kinge S; Siebbeles LDA; Houtepen AJ
    Nano Lett; 2019 May; 19(5):3002-3010. PubMed ID: 30938530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-structure Control of Ultrafast Electron Injection at Cationic Porphyrin-CdTe Quantum Dot Interfaces.
    Aly SM; Ahmed GH; Shaheen BS; Sun J; Mohammed OF
    J Phys Chem Lett; 2015 Mar; 6(5):791-5. PubMed ID: 26262654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots.
    Tynkevych O; Karavan V; Vorona I; Filonenko S; Khalavka Y
    Nanoscale Res Lett; 2018 May; 13(1):132. PubMed ID: 29721641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design of Mn
    Li H; Lu W; Song B; Zhou J; Zhao G; Han G
    RSC Adv; 2020 Sep; 10(59):35701-35708. PubMed ID: 35517066
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.