These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37702945)

  • 1. High-Throughput Structure-Based Drug Design (HT-SBDD) Using Drug Docking, Fragment Molecular Orbital Calculations, and Molecular Dynamic Techniques.
    Martin RL; Heifetz A; Bodkin MJ; Townsend-Nicholson A
    Methods Mol Biol; 2024; 2716():293-306. PubMed ID: 37702945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-Based Virtual Screening of Large Libraries in a Multi-Level In Silico Approach.
    Vieira TF; Sousa SF
    Methods Mol Biol; 2023; 2652():261-267. PubMed ID: 37093481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A
    Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvents to Fragments to Drugs: MD Applications in Drug Design.
    Defelipe LA; Arcon JP; Modenutti CP; Marti MA; Turjanski AG; Barril X
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs.
    Sohraby F; Aryapour H
    Semin Cancer Biol; 2021 Jan; 68():249-257. PubMed ID: 32360530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2024; 2714():33-83. PubMed ID: 37676592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based drug design: aiming for a perfect fit.
    van Montfort RLM; Workman P
    Essays Biochem; 2017 Nov; 61(5):431-437. PubMed ID: 29118091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A
    Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs).
    Lee Y; Lazim R; Macalino SJY; Choi S
    Curr Opin Struct Biol; 2019 Apr; 55():147-153. PubMed ID: 31102980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based virtual screening for drug discovery: principles, applications and recent advances.
    Lionta E; Spyrou G; Vassilatis DK; Cournia Z
    Curr Top Med Chem; 2014; 14(16):1923-38. PubMed ID: 25262799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Computational chemistry in structure-based drug design].
    Cao R; Li W; Sun HZ; Zhou Y; Huang N
    Yao Xue Xue Bao; 2013 Jul; 48(7):1041-52. PubMed ID: 24133970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in silico structure-based approach to anti-infective drug discovery.
    Cunningham F; McPhillie MJ; Johnson AP; Fishwick CW
    Parasitology; 2014 Jan; 141(1):17-27. PubMed ID: 23768800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment databases from screened ligands for drug discovery (FDSL-DD).
    Wilson J; Sokhansanj BA; Chong WC; Chandraghatgi R; Rosen GL; Ji HF
    J Mol Graph Model; 2024 Mar; 127():108669. PubMed ID: 38011826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach.
    Ambure P; Bhat J; Puzyn T; Roy K
    J Biomol Struct Dyn; 2019 Mar; 37(5):1282-1306. PubMed ID: 29578387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems.
    Lazim R; Suh D; Choi S
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32882859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Virtual Screening Approaches for the Identification of Small Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1.
    Luise C; Robaa D
    Methods Mol Biol; 2018; 1824():347-370. PubMed ID: 30039418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing.
    Ge H; Wang Y; Li C; Chen N; Xie Y; Xu M; He Y; Gu X; Wu R; Gu Q; Zeng L; Xu J
    J Chem Inf Model; 2013 Oct; 53(10):2757-64. PubMed ID: 24001302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR-based screening methods for lead discovery.
    Vogtherr M; Fiebig K
    EXS; 2003; (93):183-202. PubMed ID: 12613177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.