These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37703074)

  • 1. The electrophilic aromatic bromination of benzenes: mechanistic and regioselective insights from density functional theory.
    Deraet X; Desmedt E; Van Lommel R; Van Speybroeck V; De Proft F
    Phys Chem Chem Phys; 2023 Nov; 25(42):28581-28594. PubMed ID: 37703074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophilic Aromatic Substitution: New Insights into an Old Class of Reactions.
    Galabov B; Nalbantova D; Schleyer Pv; Schaefer HF
    Acc Chem Res; 2016 Jun; 49(6):1191-9. PubMed ID: 27268321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying reactivity for electrophilic aromatic substitution reactions with Hirshfeld charge.
    Liu S
    J Phys Chem A; 2015 Mar; 119(12):3107-11. PubMed ID: 25723372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.
    Wu W; Wu Z; Rong C; Lu T; Huang Y; Liu S
    J Phys Chem A; 2015 Jul; 119(29):8216-24. PubMed ID: 26125512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Where does the electron go? The nature of ortho/para and meta group directing in electrophilic aromatic substitution.
    Liu S
    J Chem Phys; 2014 Nov; 141(19):194109. PubMed ID: 25416876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity Quantum Electrodynamics Enables
    Weight BM; Weix DJ; Tonzetich ZJ; Krauss TD; Huo P
    J Am Chem Soc; 2024 Jun; 146(23):16184-16193. PubMed ID: 38814893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arenium ions are not obligatory intermediates in electrophilic aromatic substitution.
    Galabov B; Koleva G; Simova S; Hadjieva B; Schaefer HF; Schleyer Pv
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10067-72. PubMed ID: 24972792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorination of 2-phenoxypropanoic acid with NCP in aqueous acetic acid: using a novel ortho-para relationship and the para/meta ratio of substituent effects for mechanism elucidation.
    Segurado MA; Reis JC; de Oliveira JD; Kabilan S; Shanthi M
    J Org Chem; 2007 Jul; 72(14):5327-36. PubMed ID: 17567074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent and Autocatalytic Effects on the Stabilisation of the σ-Complex during Electrophilic Aromatic Chlorination.
    Van Lommel R; Moors SLC; De Proft F
    Chemistry; 2018 May; 24(27):7044-7050. PubMed ID: 29516648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation of isomer distribution in electrophilic nitration of toluene, anisole, and o-xylene: Independence of high regioselectivity from reactivity of reagent.
    Olah GA; Lin HC; Olah JA; Narang SC
    Proc Natl Acad Sci U S A; 1978 Feb; 75(2):545-8. PubMed ID: 16592489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium(II)-catalyzed annulation of N-methoxy amides and arynes: computational mechanistic insights and substituents effects.
    Alves EHS; Oliveira DAS; Braga AAC
    J Mol Model; 2024 Apr; 30(5):152. PubMed ID: 38687370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Investigation of the Role Played by Rhodium(V) in the Rhodium(III)-Catalyzed ortho-Bromination of Arenes.
    Zhang T; Qi X; Liu S; Bai R; Liu C; Lan Y
    Chemistry; 2017 Feb; 23(11):2690-2699. PubMed ID: 27997056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chalcogen Bond Catalysis with Telluronium Cations for Bromination Reaction: Importance of Electrostatic and Polarization Effects.
    Wang Y; Zhao C; Chen WK; Zeng Y
    Chemistry; 2023 Dec; 29(71):e202302749. PubMed ID: 37747101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How amino and nitro substituents direct electrophilic aromatic substitution in benzene: an explanation with Kohn-Sham molecular orbital theory and Voronoi deformation density analysis.
    Stasyuk OA; Szatylowicz H; Krygowski TM; Fonseca Guerra C
    Phys Chem Chem Phys; 2016 Apr; 18(17):11624-33. PubMed ID: 26800159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophile affinity: quantifying reactivity for the bromination of arenes.
    Galabov B; Koleva G; Schaefer HF; Schleyer Pv
    J Org Chem; 2010 May; 75(9):2813-9. PubMed ID: 20356314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates.
    Darù A; Roca-López D; Tejero T; Merino P
    J Org Chem; 2016 Jan; 81(2):673-80. PubMed ID: 26682934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A MEDT computational study of the mechanism, reactivity and selectivity of non-polar [3+2] cycloaddition between quinazoline-3-oxide and methyl 3-methoxyacrylate.
    Khorief Nacereddine A
    J Mol Model; 2020 Nov; 26(11):328. PubMed ID: 33146813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromination mechanisms of aromatic pollutants: formation of Br
    Altarawneh K; Altarawneh M
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):30126-30133. PubMed ID: 34997481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophilic aromatic substitution: enthalpies of hydrogenation of the ring determine reactivities of C6H5X. The direction of the C6H5-X bond dipole determines orientation of the substitution.
    Schnatter WF; Rogers DW; Zavitsas AA
    J Phys Chem A; 2013 Dec; 117(49):13079-88. PubMed ID: 24299174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substituent effects on the aromaticity of benzene-An approach based on interaction coordinates.
    Dey S; Manogaran D; Manogaran S; Schaefer HF
    J Chem Phys; 2019 Jun; 150(21):214108. PubMed ID: 31176350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.