These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37703164)

  • 21. A size-invariant convolutional network with dense connectivity applied to retinal vessel segmentation measured by a unique index.
    Zhuo Z; Huang J; Lu K; Pan D; Feng S
    Comput Methods Programs Biomed; 2020 Nov; 196():105508. PubMed ID: 32563893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards bi-directional skip connections in encoder-decoder architectures and beyond.
    Xiang T; Zhang C; Wang X; Song Y; Liu D; Huang H; Cai W
    Med Image Anal; 2022 May; 78():102420. PubMed ID: 35334445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast and efficient retinal blood vessel segmentation method based on deep learning network.
    Boudegga H; Elloumi Y; Akil M; Hedi Bedoui M; Kachouri R; Abdallah AB
    Comput Med Imaging Graph; 2021 Jun; 90():101902. PubMed ID: 33892389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bioinspired neural architecture search based convolutional neural network for breast cancer detection using histopathology images.
    Oyelade ON; Ezugwu AE
    Sci Rep; 2021 Oct; 11(1):19940. PubMed ID: 34620891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Global and Local Enhanced Residual U-Net for Accurate Retinal Vessel Segmentation.
    Lian S; Li L; Lian G; Xiao X; Luo Z; Li S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):852-862. PubMed ID: 31095493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic improvement of deep learning-based cell segmentation in time-lapse microscopy by neural architecture search.
    Zhu Y; Meijering E
    Bioinformatics; 2021 Dec; 37(24):4844-4850. PubMed ID: 34329376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hard Attention Net for Automatic Retinal Vessel Segmentation.
    Wang D; Haytham A; Pottenburgh J; Saeedi O; Tao Y
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3384-3396. PubMed ID: 32750941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A high resolution representation network with multi-path scale for retinal vessel segmentation.
    Lin Z; Huang J; Chen Y; Zhang X; Zhao W; Li Y; Lu L; Zhan M; Jiang X; Liang X
    Comput Methods Programs Biomed; 2021 Sep; 208():106206. PubMed ID: 34146772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ADR-Net: Context extraction network based on M-Net for medical image segmentation.
    Ji L; Jiang X; Gao Y; Fang Z; Cai Q; Wei Z
    Med Phys; 2020 Sep; 47(9):4254-4264. PubMed ID: 32602963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal blood vessel segmentation using fully convolutional network with transfer learning.
    Jiang Z; Zhang H; Wang Y; Ko SB
    Comput Med Imaging Graph; 2018 Sep; 68():1-15. PubMed ID: 29775951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MC-UNet: Multimodule Concatenation Based on U-Shape Network for Retinal Blood Vessels Segmentation.
    Li J; Zhang T; Zhao Y; Chen N; Zhou H; Xu H; Guan Z; Xue L; Yang C; Chen R; Wei L
    Comput Intell Neurosci; 2022; 2022():9917691. PubMed ID: 36387767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving sensitivity and connectivity of retinal vessel segmentation via error discrimination network.
    Lin G; Bai H; Zhao J; Yun Z; Chen Y; Pang S; Feng Q
    Med Phys; 2022 Jul; 49(7):4494-4507. PubMed ID: 35338781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RPS-Net: An effective retinal image projection segmentation network for retinal vessels and foveal avascular zone based on OCTA data.
    Li W; Zhang H; Li F; Wang L
    Med Phys; 2022 Jun; 49(6):3830-3844. PubMed ID: 35297061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-level deep supervised networks for retinal vessel segmentation.
    Mo J; Zhang L
    Int J Comput Assist Radiol Surg; 2017 Dec; 12(12):2181-2193. PubMed ID: 28577175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design.
    Ismail WN; Alsalamah HA; Hassan MM; Mohamed E
    Heliyon; 2023 Feb; 9(2):e13636. PubMed ID: 36852018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards Accurate Segmentation of Retinal Vessels and the Optic Disc in Fundoscopic Images with Generative Adversarial Networks.
    Son J; Park SJ; Jung KH
    J Digit Imaging; 2019 Jun; 32(3):499-512. PubMed ID: 30291477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. State-of-the-art retinal vessel segmentation with minimalistic models.
    Galdran A; Anjos A; Dolz J; Chakor H; Lombaert H; Ayed IB
    Sci Rep; 2022 Apr; 12(1):6174. PubMed ID: 35418576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.