BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37703293)

  • 1. Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model.
    Wang J; Chen Y; Zou Q
    PLoS Genet; 2023 Sep; 19(9):e1010942. PubMed ID: 37703293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference.
    Li S; Liu Y; Shen LC; Yan H; Song J; Yu DJ
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38261340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring gene regulatory network from single-cell transcriptomic data by integrating multiple prior networks.
    Gan Y; Xin Y; Hu X; Zou G
    Comput Biol Chem; 2021 Aug; 93():107512. PubMed ID: 34044202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model.
    Wang Y; Tian X; Ai D
    Biomed Res Int; 2021; 2021():9919080. PubMed ID: 34095314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepFGRN: inference of gene regulatory network with regulation type based on directed graph embedding.
    Gao Z; Su Y; Xia J; Cao RF; Ding Y; Zheng CH; Wei PJ
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images.
    Huang Y; Yu G; Yang Y
    PLoS Comput Biol; 2023 Nov; 19(11):e1011623. PubMed ID: 37939200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring Gene Regulatory Networks From Single-Cell Transcriptomic Data Using Bidirectional RNN.
    Gan Y; Hu X; Zou G; Yan C; Xu G
    Front Oncol; 2022; 12():899825. PubMed ID: 35692809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLARIFY: cell-cell interaction and gene regulatory network refinement from spatially resolved transcriptomics.
    Bafna M; Li H; Zhang X
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i484-i493. PubMed ID: 37387180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks.
    Yang Y; Li G; Zhong Y; Xu Q; Chen BJ; Lin YT; Chapkin RS; Cai JJ
    Nucleic Acids Res; 2023 Jul; 51(13):6578-6592. PubMed ID: 37246643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCGRNs: Novel supervised inference of single-cell gene regulatory networks of complex diseases.
    Turki T; Taguchi YH
    Comput Biol Med; 2020 Mar; 118():103656. PubMed ID: 32174324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring gene regulatory networks from single-cell gene expression data via deep multi-view contrastive learning.
    Lin Z; Ou-Yang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving gene regulatory network inference and assessment: The importance of using network structure.
    Escorcia-Rodríguez JM; Gaytan-Nuñez E; Hernandez-Benitez EM; Zorro-Aranda A; Tello-Palencia MA; Freyre-González JA
    Front Genet; 2023; 14():1143382. PubMed ID: 36926589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the Effectiveness of Causality Inference Methods for Gene Regulatory Networks.
    Ahmed SS; Roy S; Kalita J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):56-70. PubMed ID: 29994618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data.
    McCalla SG; Fotuhi Siahpirani A; Li J; Pyne S; Stone M; Periyasamy V; Shin J; Roy S
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36626328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing directed gene regulatory network by only gene expression data.
    Zhang L; Feng XK; Ng YK; Li SC
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):430. PubMed ID: 27556418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network reconstruction for trans acting genetic loci using multi-omics data and prior information.
    Hawe JS; Saha A; Waldenberger M; Kunze S; Wahl S; Müller-Nurasyid M; Prokisch H; Grallert H; Herder C; Peters A; Strauch K; Theis FJ; Gieger C; Chambers J; Battle A; Heinig M
    Genome Med; 2022 Nov; 14(1):125. PubMed ID: 36344995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures.
    Chan TE; Stumpf MPH; Babtie AC
    Cell Syst; 2017 Sep; 5(3):251-267.e3. PubMed ID: 28957658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.