These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37703383)

  • 1. Reaching the limit in autonomous racing: Optimal control versus reinforcement learning.
    Song Y; Romero A; Müller M; Koltun V; Scaramuzza D
    Sci Robot; 2023 Sep; 8(82):eadg1462. PubMed ID: 37703383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual attention prediction improves performance of autonomous drone racing agents.
    Pfeiffer C; Wengeler S; Loquercio A; Scaramuzza D
    PLoS One; 2022; 17(3):e0264471. PubMed ID: 35231038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Champion-level drone racing using deep reinforcement learning.
    Kaufmann E; Bauersfeld L; Loquercio A; Müller M; Koltun V; Scaramuzza D
    Nature; 2023 Aug; 620(7976):982-987. PubMed ID: 37648758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AlphaPilot: autonomous drone racing.
    Foehn P; Brescianini D; Kaufmann E; Cieslewski T; Gehrig M; Muglikar M; Scaramuzza D
    Auton Robots; 2022; 46(1):307-320. PubMed ID: 35221535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-guided autonomous robotic ultrasound scanning control method for soft uncertain environment.
    Ning G; Chen J; Zhang X; Liao H
    Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2189-2199. PubMed ID: 34373973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation.
    Wu J; Zhou Y; Yang H; Huang Z; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14745-14759. PubMed ID: 37703148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model predictive control for constrained robot manipulator visual servoing tuned by reinforcement learning.
    Li J; Peng X; Li B; Sreeram V; Wu J; Chen Z; Li M
    Math Biosci Eng; 2023 Apr; 20(6):10495-10513. PubMed ID: 37322945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaussian Processes for Data-Efficient Learning in Robotics and Control.
    Deisenroth MP; Fox D; Rasmussen CE
    IEEE Trans Pattern Anal Mach Intell; 2015 Feb; 37(2):408-23. PubMed ID: 26353251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning.
    Haşegan D; Deible M; Earl C; D'Onofrio D; Hazan H; Anwar H; Neymotin SA
    Front Comput Neurosci; 2022; 16():1017284. PubMed ID: 36249482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Policy Design for an Ankle-Foot Orthosis Using Simulated Physical Human-Robot Interaction via Deep Reinforcement Learning.
    Han JI; Lee JH; Choi HS; Kim JH; Choi J
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2186-2197. PubMed ID: 35925859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition.
    Kiangala KS; Wang Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement Learning for Mobile Robotics Exploration: A Survey.
    Garaffa LC; Basso M; Konzen AA; de Freitas EP
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):3796-3810. PubMed ID: 34767514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot Reinforcement and Error-Based Movement Learning in Infants With and Without Cerebral Palsy.
    Kolobe THA; Fagg AH
    Phys Ther; 2019 Jun; 99(6):677-688. PubMed ID: 31155667
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.