These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37703459)
1. Dynamic Molecular Investigation of the Solid-Electrolyte Interphase of an Anode-Free Lithium Metal Battery Using Cheng C; Zhou Y; Xu Y; Jia H; Kim J; Xu W; Wang C; Gao P; Zhu Z Nano Lett; 2023 Sep; 23(18):8385-8391. PubMed ID: 37703459 [TBL] [Abstract][Full Text] [Related]
2. Nanostructural and Electrochemical Evolution of the Solid-Electrolyte Interphase on CuO Nanowires Revealed by Cryogenic-Electron Microscopy and Impedance Spectroscopy. Huang W; Boyle DT; Li Y; Li Y; Pei A; Chen H; Cui Y ACS Nano; 2019 Jan; 13(1):737-744. PubMed ID: 30589528 [TBL] [Abstract][Full Text] [Related]
3. Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries. Dachraoui W; Pauer R; Battaglia C; Erni R ACS Nano; 2023 Oct; 17(20):20434-20444. PubMed ID: 37831942 [TBL] [Abstract][Full Text] [Related]
4. Evolution of the Solid-Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy. Huang W; Attia PM; Wang H; Renfrew SE; Jin N; Das S; Zhang Z; Boyle DT; Li Y; Bazant MZ; McCloskey BD; Chueh WC; Cui Y Nano Lett; 2019 Aug; 19(8):5140-5148. PubMed ID: 31322896 [TBL] [Abstract][Full Text] [Related]
5. Revealing Lithium Nitrate-Mediated Solid-Electrolyte Interphase of Lithium Metal Anode via Cryogenic Transmission Electron Microscopy. Zhen C; Yang X; Wei X; Zhu Y; Han S; Shi X; Deng L; Gu MD Nano Lett; 2024 Jun; 24(22):6714-6721. PubMed ID: 38781452 [TBL] [Abstract][Full Text] [Related]
6. Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal. Kamphaus EP; Gomez SA; Qin X; Shao M; Balbuena PB Chemphyschem; 2020 Jun; 21(12):1310-1317. PubMed ID: 32364643 [TBL] [Abstract][Full Text] [Related]
7. In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries. Zhu Z; Zhou Y; Yan P; Vemuri RS; Xu W; Zhao R; Wang X; Thevuthasan S; Baer DR; Wang CM Nano Lett; 2015 Sep; 15(9):6170-6. PubMed ID: 26287361 [TBL] [Abstract][Full Text] [Related]
8. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy. Xu Y; Wu H; He Y; Chen Q; Zhang JG; Xu W; Wang C Nano Lett; 2020 Jan; 20(1):418-425. PubMed ID: 31816244 [TBL] [Abstract][Full Text] [Related]
9. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries. Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366 [TBL] [Abstract][Full Text] [Related]
10. Improved electrochemical performance and solid electrolyte interphase properties of electrolytes based on lithium bis(fluorosulfonyl)imide for high content silicon anodes. Asheim K; Vullum PE; Wagner NP; Andersen HF; Mæhlen JP; Svensson AM RSC Adv; 2022 Apr; 12(20):12517-12530. PubMed ID: 35480361 [TBL] [Abstract][Full Text] [Related]
11. Poor Stability of Li Han B; Zhang Z; Zou Y; Xu K; Xu G; Wang H; Meng H; Deng Y; Li J; Gu M Adv Mater; 2021 Jun; 33(22):e2100404. PubMed ID: 33899278 [TBL] [Abstract][Full Text] [Related]
12. Dual-Layered Interfacial Evolution of Lithium Metal Anode: SEI Analysis via TOF-SIMS Technology. Ma C; Xu F; Song T ACS Appl Mater Interfaces; 2022 May; 14(17):20197-20207. PubMed ID: 35470659 [TBL] [Abstract][Full Text] [Related]
13. Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries. Su CC; He M; Shi J; Amine R; Zhang J; Amine K Angew Chem Int Ed Engl; 2020 Oct; 59(41):18229-18233. PubMed ID: 32638459 [TBL] [Abstract][Full Text] [Related]
14. Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries. Liu Y; Ju Z; Zhang B; Wang Y; Nai J; Liu T; Tao X Acc Chem Res; 2021 May; 54(9):2088-2099. PubMed ID: 33856759 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes. Hasa I; Haregewoin AM; Zhang L; Tsai WY; Guo J; Veith GM; Ross PN; Kostecki R ACS Appl Mater Interfaces; 2020 Sep; 12(36):40879-40890. PubMed ID: 32805823 [TBL] [Abstract][Full Text] [Related]
16. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties. Zhang Z; Smith K; Jervis R; Shearing PR; Miller TS; Brett DJL ACS Appl Mater Interfaces; 2020 Aug; 12(31):35132-35141. PubMed ID: 32657567 [TBL] [Abstract][Full Text] [Related]
17. Strain-Induced Lithium Losses in the Solid Electrolyte Interphase on Silicon Electrodes. Kumar R; Lu P; Xiao X; Huang Z; Sheldon BW ACS Appl Mater Interfaces; 2017 Aug; 9(34):28406-28417. PubMed ID: 28770982 [TBL] [Abstract][Full Text] [Related]
18. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries. Schroder KW; Dylla AG; Harris SJ; Webb LJ; Stevenson KJ ACS Appl Mater Interfaces; 2014 Dec; 6(23):21510-24. PubMed ID: 25402271 [TBL] [Abstract][Full Text] [Related]
19. Coupling Liquid Electrochemical TEM and Mass-Spectrometry to Investigate Electrochemical Reactions Occurring in a Na-Ion Battery Anode. Gallegos-Moncayo K; Folastre N; Toledo M; Tonnoir H; Rabuel F; Gachot G; Huo D; Demortière A Small Methods; 2024 Aug; ():e2400365. PubMed ID: 39210642 [TBL] [Abstract][Full Text] [Related]
20. Recent Advances in Solid-Electrolyte Interphase for Li Metal Anode. He D; Lu J; He G; Chen H Front Chem; 2022; 10():916132. PubMed ID: 35668827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]