These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37703518)

  • 1. Direct Evidence for Excited Ligand Field State-based Oxidative Photoredox Chemistry of a Cobalt(III) Polypyridyl Photosensitizer.
    Alowakennu MM; Ghosh A; McCusker JK
    J Am Chem Soc; 2023 Sep; 145(38):20786-20791. PubMed ID: 37703518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Origin of Photoredox Catalysis Involving Iron(II) Polypyridyl Chromophores.
    Woodhouse MD; McCusker JK
    J Am Chem Soc; 2020 Sep; 142(38):16229-16233. PubMed ID: 32914970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Density Difference Analysis on the Oxidative and Reductive Quenching Cycles of Classical Iridium and Ruthenium Photoredox Catalysts.
    Medina E; Pinter B
    J Phys Chem A; 2020 May; 124(21):4223-4234. PubMed ID: 32364751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Structures and Photoredox Chemistry of Tungsten(0) Arylisocyanides.
    Barth AT; Fajardo J; Sattler W; Winkler JR; Gray HB
    Acc Chem Res; 2023 Jul; 56(14):1978-1989. PubMed ID: 37384787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stark Spectroscopic Evidence that a Spin Change Accompanies Light Absorption in Transition Metal Polypyridyl Complexes.
    Maurer AB; Meyer GJ
    J Am Chem Soc; 2020 Apr; 142(15):6847-6851. PubMed ID: 32216315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis.
    Chan AY; Ghosh A; Yarranton JT; Twilton J; Jin J; Arias-Rotondo DM; Sakai HA; McCusker JK; MacMillan DWC
    Science; 2023 Oct; 382(6667):191-197. PubMed ID: 37824651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.
    Knoll JD; Albani BA; Turro C
    Acc Chem Res; 2015 Aug; 48(8):2280-7. PubMed ID: 26186416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a Cr
    Bürgin TH; Glaser F; Wenger OS
    J Am Chem Soc; 2022 Aug; 144(31):14181-14194. PubMed ID: 35913126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex.
    Treiling S; Wang C; Förster C; Reichenauer F; Kalmbach J; Boden P; Harris JP; Carrella LM; Rentschler E; Resch-Genger U; Reber C; Seitz M; Gerhards M; Heinze K
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18075-18085. PubMed ID: 31600421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy)
    Drolen C; Conklin E; Hetterich SJ; Krishnamurthy A; Andrade GA; Dimeglio JL; Martin MI; Tran LK; Yap GPA; Rosenthal J; Young ER
    J Am Chem Soc; 2018 Aug; 140(32):10169-10178. PubMed ID: 30070469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited-State Electronic Structure in Polypyridyl Complexes Containing Unsymmetrical Ligands.
    Omberg KM; Smith GD; Kavaliunas DA; Chen P; Treadway JA; Schoonover JR; Palmer RA; Meyer TJ
    Inorg Chem; 1999 Mar; 38(5):951-956. PubMed ID: 11670867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the Mechanism of Excited-State Bond Homolysis in Nickel-Bipyridine Photoredox Catalysts.
    Cagan DA; Bím D; Silva B; Kazmierczak NP; McNicholas BJ; Hadt RG
    J Am Chem Soc; 2022 Apr; 144(14):6516-6531. PubMed ID: 35353530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited-State Engineering in Heteroleptic Ionic Iridium(III) Complexes.
    Monti F; Baschieri A; Sambri L; Armaroli N
    Acc Chem Res; 2021 Mar; 54(6):1492-1505. PubMed ID: 33617233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependent iodide oxidation by MLCT excited states.
    Taheri A; Meyer GJ
    Dalton Trans; 2014 Dec; 43(47):17856-63. PubMed ID: 25307107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-vibronic quantum dynamics for ultrafast excited-state processes.
    Eng J; Gourlaouen C; Gindensperger E; Daniel C
    Acc Chem Res; 2015 Mar; 48(3):809-17. PubMed ID: 25647179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer.
    Zhang Y; Lee TS; Petersen JL; Milsmann C
    J Am Chem Soc; 2018 May; 140(18):5934-5947. PubMed ID: 29671586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and Electronic Structures of Homoleptic Six-Coordinate Cobalt(I) Complexes of 2,2':6',2″-Terpyridine, 2,2'-Bipyridine, and 1,10-Phenanthroline. An Experimental and Computational Study.
    England J; Bill E; Weyhermüller T; Neese F; Atanasov M; Wieghardt K
    Inorg Chem; 2015 Dec; 54(24):12002-18. PubMed ID: 26636830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling ground and excited state properties through ligand changes in ruthenium polypyridyl complexes.
    Ashford DL; Glasson CR; Norris MR; Concepcion JJ; Keinan S; Brennaman MK; Templeton JL; Meyer TJ
    Inorg Chem; 2014 Jun; 53(11):5637-46. PubMed ID: 24849026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.