These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37703779)

  • 41. A novel turn-on type AIE fluorescent probe for highly selective detection of cysteine/homocysteine and its application in living cells.
    Wang W; Ji M; Chen J; Wang P
    Talanta; 2022 Mar; 239():123091. PubMed ID: 34861486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondria-targeted and FRET-based fluorescent probe for the imaging of endogenous SO
    Sun Y; Wang Y; Lu Y; Kong X; Wei H; Chen Q; Yan M; Dong B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120397. PubMed ID: 34547682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescence distinguishing of SO
    Song X; Jing C; Wang Y; Feng Y; Cao C; Wang K; Liu W; Ru J
    J Hazard Mater; 2021 Jul; 413():125332. PubMed ID: 33582462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A tri-site fluorescent probe for simultaneous sensing of hydrogen sulfide and glutathione and its bioimaging applications.
    Chen F; Han D; Liu H; Wang S; Li KB; Zhang S; Shi W
    Analyst; 2018 Jan; 143(2):440-448. PubMed ID: 29265125
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual-channel luminescent Ir(III) complex for detection of GSH and Hcy/Cys in cells.
    Mu X; Li MJ; Fu F
    Biosens Bioelectron; 2024 Feb; 246():115901. PubMed ID: 38048719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A simple highly specific fluorescent probe for simultaneous discrimination of cysteine/homocysteine and glutathione/hydrogen sulfide in living cells and zebrafish using two separated fluorescence channels under single wavelength excitation.
    Zhu H; Liu C; Yuan R; Wang R; Zhang H; Li Z; Jia P; Zhu B; Sheng W
    Analyst; 2019 Jul; 144(14):4258-4265. PubMed ID: 31215916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An aggregation induced emission chalcone fluorescent probe with large Stokes shift for biothiols detection.
    Tang R; Wang C; Zhou X; Feng M; Li Z; Wang Y; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122870. PubMed ID: 37216722
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Simple and Rapid Turn On ESIPT Fluorescent Probe for Colorimetric and Ratiometric Detection of Biothiols in Living Cells.
    Wang Y; Zhu M; Jiang E; Hua R; Na R; Li QX
    Sci Rep; 2017 Jun; 7(1):4377. PubMed ID: 28663561
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fluorescence turn-on probe for hydrogen sulfide and biothiols based on PET & TICT and its imaging in HeLa cells.
    Zhang X; Jin X; Zhang C; Zhong H; Zhu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 244():118839. PubMed ID: 32882655
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Employing an ICT-FRET Integration Platform for the Real-Time Tracking of SO
    Zhang W; Huo F; Cheng F; Yin C
    J Am Chem Soc; 2020 Apr; 142(13):6324-6331. PubMed ID: 32130860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nile-Red-Based Fluorescence Probe for Selective Detection of Biothiols, Computational Study, and Application in Cell Imaging.
    Rong X; Xu ZY; Yan JW; Meng ZZ; Zhu B; Zhang L
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and application of benzoxazole derivative-based fluorescent probes for naked eye recognition.
    Song Y; Zhou L; Wang J; Wang F; Yang Q
    Luminescence; 2020 Nov; 35(7):1010-1016. PubMed ID: 32406126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A fluorescent dyad with large emission shift for discrimination of cysteine/homocysteine from glutathione and hydrogen sulfide and the application of bioimaging.
    Yang X; He L; Xu K; Lin W
    Anal Chim Acta; 2017 Aug; 981():86-93. PubMed ID: 28693733
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine.
    He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Red-Emission Fluorescent Probe for Intracellular Biothiols and Hydrogen Sulfide Imaging in Living Cells.
    Wang Y; Zhang S; Liu T; Chen J; Yuan B; Lu C; Bo X; Xu Z
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual Response Site Fluorescent Probe for Highly Sensitive Detection of Cys/Hcy and GSH In Vivo through Two Different Emission Channels.
    Hou H; Liu Q; Liu X; Fu S; Zhang H; Li S; Chen S; Hou P
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. L-cystine-linked BODIPY-adsorbed monolayer MoS
    Krishna Kumar AS; Tseng WB; Wu MJ; Huang YY; Tseng WL
    Anal Chim Acta; 2020 May; 1113():43-51. PubMed ID: 32340668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous Visualization of Endogenous Homocysteine, Cysteine, Glutathione, and their Transformation through Different Fluorescence Channels.
    Yin G; Niu T; Yu T; Gan Y; Sun X; Yin P; Chen H; Zhang Y; Li H; Yao S
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4557-4561. PubMed ID: 30742366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A colorimetric and ratiometric fluorescent probe for selective detection and cellular imaging of glutathione.
    Xu C; Li H; Yin B
    Biosens Bioelectron; 2015 Oct; 72():275-81. PubMed ID: 25988996
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A visible and near-infrared, dual emission fluorescent probe based on thiol reactivity for selectively tracking mitochondrial glutathione in vitro.
    Xu Y; Li R; Zhou X; Li W; Ernest U; Wan H; Li L; Chen H; Yuan Z
    Talanta; 2019 Dec; 205():120125. PubMed ID: 31450407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.