These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37703974)

  • 1. Proliferation and differential regulation of osteoblasts cultured on surface-phosphorylated cellulose nanofiber scaffolds.
    Liu Q; Li Q; Hatakeyama M; Kitaoka T
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126842. PubMed ID: 37703974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering.
    Maharjan B; Park J; Kaliannagounder VK; Awasthi GP; Joshi MK; Park CH; Kim CS
    Carbohydr Polym; 2021 Jan; 251():117023. PubMed ID: 33142583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytocompatible and osteoinductive cotton cellulose nanofiber/chitosan nanobiocomposite scaffold for bone tissue engineering.
    Zanette RSS; Fayer L; Vasconcellos R; de Oliveira LFC; Maranduba CMDC; de Alvarenga ÉLFC; Martins MA; Brandão HM; Munk M
    Biomed Mater; 2023 Aug; 18(5):. PubMed ID: 37494940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects.
    Zhang Y; Yin C; Cheng Y; Huang X; Liu K; Cheng G; Li Z
    Adv Wound Care (New Rochelle); 2020 Aug; 9(8):441-452. PubMed ID: 32857019
    [No Abstract]   [Full Text] [Related]  

  • 5. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers.
    Cui Z; Lin J; Zhan C; Wu J; Shen S; Si J; Wang Q
    J Biomater Sci Polym Ed; 2020 Apr; 31(5):561-577. PubMed ID: 31920175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure.
    Cai Q; Shi Y; Shan D; Jia W; Duan S; Deng X; Yang X
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():166-73. PubMed ID: 26117751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments.
    Chen X; Fu X; Shi JG; Wang H
    Nanomedicine; 2013 Nov; 9(8):1283-92. PubMed ID: 23665421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced osteogenic differentiation and mineralization of human dental pulp stem cells using Prunus amygdalus amara (bitter almond) incorporated nanofibrous scaffold.
    Valizadeh N; Salehi R; Aghazadeh M; Alipour M; Sadeghzadeh H; Mahkam M
    J Mech Behav Biomed Mater; 2023 Jun; 142():105790. PubMed ID: 37104899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.
    Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S
    Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Protocol for Culture and Differentiation of Osteoblasts on 3D Abode Using Nanofiber Scaffolds.
    Sofi HS; Ashraf R; Sheikh FA
    Methods Mol Biol; 2020; 2125():95-108. PubMed ID: 31004285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold.
    Akhtar M; Woo KM; Tahir M; Wu W; Elango J; Mirza MR; Khan M; Shamim S; Arany PR; Rahman SU
    Clin Oral Investig; 2022 Mar; 26(3):2607-2618. PubMed ID: 34677694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanosensitive osteogenesis on native cellulose scaffolds for bone tissue engineering.
    Leblanc Latour M; Pelling AE
    J Biomech; 2022 Apr; 135():111030. PubMed ID: 35288315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation.
    Ho MH; Liao MH; Lin YL; Lai CH; Lin PI; Chen RM
    Int J Nanomedicine; 2014; 9():4293-304. PubMed ID: 25246786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the nanofiber chemistry and orientation of biodegradable poly(butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration.
    Cristofaro F; Gigli M; Bloise N; Chen H; Bruni G; Munari A; Moroni L; Lotti N; Visai L
    Nanoscale; 2018 May; 10(18):8689-8703. PubMed ID: 29701213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells.
    Gorgieva S; Girandon L; Kokol V
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():478-489. PubMed ID: 28183635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells.
    Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K
    Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.