These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37703974)

  • 21. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells.
    Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K
    Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanofiber scaffold gradients for interfacial tissue engineering.
    Ramalingam M; Young MF; Thomas V; Sun L; Chow LC; Tison CK; Chatterjee K; Miles WC; Simon CG
    J Biomater Appl; 2013 Feb; 27(6):695-705. PubMed ID: 22286209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications.
    Joshi MK; Lee S; Tiwari AP; Maharjan B; Poudel SB; Park CH; Kim CS
    Int J Biol Macromol; 2020 Dec; 164():976-985. PubMed ID: 32710964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.
    Dong S; Sun J; Li Y; Li J; Cui W; Li B
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering.
    Dhivya S; Keshav Narayan A; Logith Kumar R; Viji Chandran S; Vairamani M; Selvamurugan N
    Cell Prolif; 2018 Feb; 51(1):. PubMed ID: 29159895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances.
    Luo H; Gan D; Gama M; Tu J; Yao F; Zhang Q; Ao H; Yang Z; Li J; Wan Y
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110416. PubMed ID: 31923960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration.
    Stachewicz U; Qiao T; Rawlinson SCF; Almeida FV; Li WQ; Cattell M; Barber AH
    Acta Biomater; 2015 Nov; 27():88-100. PubMed ID: 26348143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable bead-on-spring nanofibers releasing β-carotene for bone tissue engineering.
    Esmailian S; Irani S; Bakhshi H; Zandi M
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():800-806. PubMed ID: 30184809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.
    Horii A; Wang X; Gelain F; Zhang S
    PLoS One; 2007 Feb; 2(2):e190. PubMed ID: 17285144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds.
    Mirzaei A; Moghadam AS; Abazari MF; Nejati F; Torabinejad S; Kaabi M; Enderami SE; Ardeshirylajimi A; Darvish M; Soleimanifar F; Saburi E
    J Cell Physiol; 2019 Aug; 234(10):17854-17862. PubMed ID: 30851069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential.
    Wang X; Gittens RA; Song R; Tannenbaum R; Olivares-Navarrete R; Schwartz Z; Chen H; Boyan BD
    Acta Biomater; 2012 Feb; 8(2):878-85. PubMed ID: 22075122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation.
    Chen BQ; Kankala RK; Chen AZ; Yang DZ; Cheng XX; Jiang NN; Zhu K; Wang SB
    Int J Nanomedicine; 2017; 12():1877-1890. PubMed ID: 28331312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mineralized Polyamide66/Calcium Chloride Nanofibers for Bone Tissue Engineering.
    Niu X; Zhao L; Yin M; Huang D; Wang N; Wei Y; Hu Y; Lian X; Chen W
    Tissue Eng Part C Methods; 2020 Jul; 26(7):352-363. PubMed ID: 32458747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Establishment of 3D culture and induction of osteogenic differentiation of pre-osteoblasts using wet-collected aligned scaffolds.
    Ding H; Zhong J; Xu F; Song F; Yin M; Wu Y; Hu Q; Wang J
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():222-230. PubMed ID: 27987702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biphasic calcium phosphate ceramic scaffold loaded with oxidized cellulose nanofiber-gelatin hydrogel with immobilized simvastatin drug for osteogenic differentiation.
    Faruq O; Sayed S; Kim B; Im SB; Lee BT
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1229-1238. PubMed ID: 31410989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.