These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37704189)
1. Regiospecific Cellulose Orientation and Anisotropic Mechanical Property in Plant Cell Walls. Lee J; Choi J; Feng L; Yu J; Zheng Y; Zhang Q; Lin YT; Sah S; Gu Y; Zhang S; Cosgrove DJ; Kim SH Biomacromolecules; 2023 Nov; 24(11):4759-4770. PubMed ID: 37704189 [TBL] [Abstract][Full Text] [Related]
2. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Huang S; Makarem M; Kiemle SN; Zheng Y; He X; Ye D; Gomez EW; Gomez ED; Cosgrove DJ; Kim SH Carbohydr Polym; 2018 Oct; 197():337-348. PubMed ID: 30007621 [TBL] [Abstract][Full Text] [Related]
3. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa. Akkerman M; Franssen-Verheijen MA; Immerzeel P; Hollander LD; Schel JH; Emons AM J Microsc; 2012 Jul; 247(1):60-7. PubMed ID: 22458271 [TBL] [Abstract][Full Text] [Related]
4. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Yi H; Puri VM Plant Physiol; 2012 Nov; 160(3):1281-92. PubMed ID: 22926320 [TBL] [Abstract][Full Text] [Related]
5. Tissue-specific directionality of cellulose synthase complex movement inferred from cellulose microfibril polarity in secondary cell walls of Arabidopsis. Choi J; Makarem M; Lee C; Lee J; Kiemle S; Cosgrove DJ; Kim SH Sci Rep; 2023 Dec; 13(1):22007. PubMed ID: 38086837 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Structural Change of Plant Epidermal Cell Walls under Strain. Yu J; Del Mundo JT; Freychet G; Zhernenkov M; Schaible E; Gomez EW; Gomez ED; Cosgrove DJ Small; 2024 Jul; 20(30):e2311832. PubMed ID: 38386283 [TBL] [Abstract][Full Text] [Related]
7. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues. Ptashnyk M; Seguin B Bull Math Biol; 2016 Nov; 78(11):2135-2164. PubMed ID: 27761699 [TBL] [Abstract][Full Text] [Related]
8. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Zhang T; Zheng Y; Cosgrove DJ Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644 [TBL] [Abstract][Full Text] [Related]
9. Contributions of the mechanical properties of major structural polysaccharides to the stiffness of a cell wall network model. Yi H; Puri VM Am J Bot; 2014 Feb; 101(2):244-54. PubMed ID: 24491345 [TBL] [Abstract][Full Text] [Related]
10. How Many Glucan Chains Form Plant Cellulose Microfibrils? A Mini Review. Cosgrove DJ; Dupree P; Gomez ED; Haigler CH; Kubicki JD; Zimmer J Biomacromolecules; 2024 Oct; 25(10):6357-6366. PubMed ID: 39207939 [TBL] [Abstract][Full Text] [Related]
11. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy. Sun L; Singh S; Joo M; Vega-Sanchez M; Ronald P; Simmons BA; Adams P; Auer M Biotechnol Bioeng; 2016 Jan; 113(1):82-90. PubMed ID: 26137889 [TBL] [Abstract][Full Text] [Related]
13. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Lee CM; Kafle K; Park YB; Kim SH Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365 [TBL] [Abstract][Full Text] [Related]
14. Inhomogeneity of Cellulose Microfibril Assembly in Plant Cell Walls Revealed with Sum Frequency Generation Microscopy. Huang S; Makarem M; Kiemle SN; Hamedi H; Sau M; Cosgrove DJ; Kim SH J Phys Chem B; 2018 May; 122(19):5006-5019. PubMed ID: 29697980 [TBL] [Abstract][Full Text] [Related]
15. Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Fujita M; Himmelspach R; Hocart CH; Williamson RE; Mansfield SD; Wasteneys GO Plant J; 2011 Jun; 66(6):915-28. PubMed ID: 21535258 [TBL] [Abstract][Full Text] [Related]
16. WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics. Kha H; Tuble SC; Kalyanasundaram S; Williamson RE Plant Physiol; 2010 Feb; 152(2):774-86. PubMed ID: 20007450 [TBL] [Abstract][Full Text] [Related]
17. Progress and Opportunities in the Characterization of Cellulose - An Important Regulator of Cell Wall Growth and Mechanics. Rongpipi S; Ye D; Gomez ED; Gomez EW Front Plant Sci; 2018; 9():1894. PubMed ID: 30881371 [TBL] [Abstract][Full Text] [Related]
18. Lockhart with a twist: Modelling cellulose microfibril deposition and reorientation reveals twisting plant cell growth mechanisms. Chakraborty J; Luo J; Dyson RJ J Theor Biol; 2021 Sep; 525():110736. PubMed ID: 33915144 [TBL] [Abstract][Full Text] [Related]
19. Nanoscale structure, mechanics and growth of epidermal cell walls. Cosgrove DJ Curr Opin Plant Biol; 2018 Dec; 46():77-86. PubMed ID: 30142487 [TBL] [Abstract][Full Text] [Related]
20. Preferred crystallographic orientation of cellulose in plant primary cell walls. Ye D; Rongpipi S; Kiemle SN; Barnes WJ; Chaves AM; Zhu C; Norman VA; Liebman-Peláez A; Hexemer A; Toney MF; Roberts AW; Anderson CT; Cosgrove DJ; Gomez EW; Gomez ED Nat Commun; 2020 Sep; 11(1):4720. PubMed ID: 32948753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]