These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37704399)
1. Enhanced intestinal barrier function as the mechanism of antibiotic growth promoters in feed additives. Uehara A; Maekawa M; Nakagawa K Biosci Biotechnol Biochem; 2023 Oct; 87(11):1381-1392. PubMed ID: 37704399 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives. Brown K; Uwiera RRE; Kalmokoff ML; Brooks SPJ; Inglis GD Int J Antimicrob Agents; 2017 Jan; 49(1):12-24. PubMed ID: 27717740 [TBL] [Abstract][Full Text] [Related]
3. The sub-inhibitory theory for antibiotic growth promoters. Broom LJ Poult Sci; 2017 Sep; 96(9):3104-3108. PubMed ID: 28595312 [TBL] [Abstract][Full Text] [Related]
4. Response of intestinal microbiota to antibiotic growth promoters in chickens. Lin J; Hunkapiller AA; Layton AC; Chang YJ; Robbins KR Foodborne Pathog Dis; 2013 Apr; 10(4):331-7. PubMed ID: 23461609 [TBL] [Abstract][Full Text] [Related]
5. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Niewold TA Poult Sci; 2007 Apr; 86(4):605-9. PubMed ID: 17369528 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Camellia sinensis catechins as a swine antimicrobial feed additive that does not cause antibiotic resistance. Ohno A; Kataoka S; Ishii Y; Terasaki T; Kiso M; Okubo M; Yamaguchi K; Tateda K Microbes Environ; 2013; 28(1):81-6. PubMed ID: 23138151 [TBL] [Abstract][Full Text] [Related]
7. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. Zou A; Nadeau K; Xiong X; Wang PW; Copeland JK; Lee JY; Pierre JS; Ty M; Taj B; Brumell JH; Guttman DS; Sharif S; Korver D; Parkinson J Microbiome; 2022 Aug; 10(1):127. PubMed ID: 35965349 [TBL] [Abstract][Full Text] [Related]
8. Therapeutic Potential of Antimicrobial Peptide PN5 against Multidrug-Resistant E. coli and Anti-Inflammatory Activity in a Septic Mouse Model. Kang DD; Park J; Park Y Microbiol Spectr; 2022 Oct; 10(5):e0149422. PubMed ID: 36129300 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial peptides used as growth promoters in livestock production. Rodrigues G; Maximiano MR; Franco OL Appl Microbiol Biotechnol; 2021 Oct; 105(19):7115-7121. PubMed ID: 34499200 [TBL] [Abstract][Full Text] [Related]
10. Expression of a recombinant hybrid antimicrobial peptide magainin II-cecropin B in the mycelium of the medicinal fungus Cordyceps militaris and its validation in mice. Zhang M; Shan Y; Gao H; Wang B; Liu X; Dong Y; Liu X; Yao N; Zhou Y; Li X; Li H Microb Cell Fact; 2018 Feb; 17(1):18. PubMed ID: 29402269 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota. Brown K; Zaytsoff SJ; Uwiera RR; Inglis GD Sci Rep; 2016 Dec; 6():38377. PubMed ID: 27929072 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Wang Z; Zeng X; Mo Y; Smith K; Guo Y; Lin J Appl Environ Microbiol; 2012 Dec; 78(24):8795-802. PubMed ID: 23064348 [TBL] [Abstract][Full Text] [Related]
13. Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics. Helm ET; Curry S; Trachsel JM; Schroyen M; Gabler NK PLoS One; 2019; 14(4):e0216070. PubMed ID: 31026263 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial and anti-inflammatory activity of plant species used in traditional poultry ethnomedicine in Zimbabwe: A first step to developing alternatives to antibiotic poultry feed additives. Jambwa P; Nkadimeng SM; Mudimba TN; Matope G; McGaw LJ J Ethnopharmacol; 2023 Jan; 300():115687. PubMed ID: 36084819 [TBL] [Abstract][Full Text] [Related]
15. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. Aarestrup FM APMIS Suppl; 2000; 101():1-48. PubMed ID: 11125553 [TBL] [Abstract][Full Text] [Related]
16. Phytogenic Compounds for Enhancing Intestinal Barrier Function in Poultry-A Review. Latek U; Chłopecka M; Karlik W; Mendel M Planta Med; 2022 Mar; 88(3-04):218-236. PubMed ID: 34331305 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of deoxythymidine-based cationic amphiphiles as antimicrobial, antibiofilm, and anti-inflammatory agents. Kim EY; Kumar SD; Bang JK; Ajish C; Yang S; Ganbaatar B; Kim J; Lee CW; Cho SJ; Shin SY Int J Antimicrob Agents; 2023 Sep; 62(3):106909. PubMed ID: 37419291 [TBL] [Abstract][Full Text] [Related]
18. Phage-mediated dissemination of virulence factors in pathogenic bacteria facilitated by antibiotic growth promoters in animals: a perspective. Tamang MD; Sunwoo H; Jeon B Anim Health Res Rev; 2017 Dec; 18(2):160-166. PubMed ID: 29183407 [TBL] [Abstract][Full Text] [Related]
19. In vivo analysis the effect of antibiotic growth promoters (AGPs), Oxytetracycline di-hydrate and Tylosin phosphate on the intestinal microflora in broiler chicken. Shah SH; Sheikh IS; Kakar N; Sumaira ; Afzal S; Mehmood K; Rehman HU Braz J Biol; 2022; 84():e258114. PubMed ID: 35649037 [TBL] [Abstract][Full Text] [Related]
20. Biosynthetic Microcin J25 Exerts Strong Antibacterial, Anti-Inflammatory Activities, Low Cytotoxicity Without Increasing Drug-Resistance to Bacteria Target. Yu H; Shang L; Yang G; Dai Z; Zeng X; Qiao S Front Immunol; 2022; 13():811378. PubMed ID: 35250983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]