These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37705125)

  • 1. Giant Piezoelectric Output and Stability Enhancement in Piezopolymer Composites with Liquid Metal Nanofillers.
    Liu J; Zeng S; Zhang M; Xiong J; Gu H; Wang Z; Hu Y; Zhang X; Du Y; Ren L
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304096. PubMed ID: 37705125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humidity Sustainable Hydrophobic Poly(vinylidene fluoride)-Carbon Nanotubes Foam Based Piezoelectric Nanogenerator.
    Badatya S; Bharti DK; Sathish N; Srivastava AK; Gupta MK
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27245-27254. PubMed ID: 34096257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting the Piezoelectric Response and Interfacial Compatibility in Flexible Piezoelectric Composites via DET-Doping BT Nanoparticles.
    Liu L; Zhang H; Zhou S; Du C; Liu M; Zhang Y
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Piezoelectric Nanogenerators Based on Core-Shell Ga-PZT@GaO
    Zeng S; Zhang M; Jiang L; Wang Z; Gu H; Xiong J; Du Y; Ren L
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7990-8000. PubMed ID: 35107968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices.
    Lin J; Malakooti MH; Sodano HA
    ACS Appl Mater Interfaces; 2020 May; 12(19):21871-21882. PubMed ID: 32316731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films.
    Yoon S; Shin DJ; Ko YH; Cho KH; Koh JH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1289-1294. PubMed ID: 30469177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable polymer composites with ultrahigh piezoelectric performance.
    Tang T; Shen Z; Wang J; Xu S; Jiang J; Chang J; Guo M; Fan Y; Xiao Y; Dong Z; Huang H; Li X; Zhang Y; Wang D; Chen LQ; Wang K; Zhang S; Nan CW; Shen Y
    Natl Sci Rev; 2023 Aug; 10(8):nwad177. PubMed ID: 37485000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible PVDF-TrFE Nanocomposites with Ag-decorated BCZT Heterostructures for Piezoelectric Nanogenerator Applications.
    Yan M; Liu S; Liu Y; Xiao Z; Yuan X; Zhai D; Zhou K; Wang Q; Zhang D; Bowen C; Zhang Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53261-53273. PubMed ID: 36379056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-poled piezoelectric polymer composites via melt-state energy implantation.
    Huang ZX; Li LW; Huang YZ; Rao WX; Jiang HW; Wang J; Zhang HH; He HZ; Qu JP
    Nat Commun; 2024 Jan; 15(1):819. PubMed ID: 38280902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PVDF/AgNP/MXene composites-based near-field electrospun fiber with enhanced piezoelectric performance for self-powered wearable sensors.
    Pan CT; Dutt K; Kumar A; Kumar R; Chuang CH; Lo YT; Wen ZH; Wang CS; Kuo SW
    Int J Bioprint; 2023; 9(1):647. PubMed ID: 36844238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.
    Gupta MK; Kim SW; Kumar B
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1766-73. PubMed ID: 26735739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of PVDF/BaTiO
    Yang C; Song S; Chen F; Chen N
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41723-41734. PubMed ID: 34431292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyvinylidene Fluoride-Added Ceramic Powder Composite Near-Field Electrospinned Piezoelectric Fiber-Based Low-Frequency Dynamic Sensors.
    Pan CT; Wang SY; Yen CK; Kumar A; Kuo SW; Zheng JL; Wen ZH; Singh R; Singh SP; Khan MT; Chaudhary RK; Dai X; Chandra Kaushik A; Wei DQ; Shiue YL; Chang WH
    ACS Omega; 2020 Jul; 5(28):17090-17101. PubMed ID: 32715194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halide Tunablility Leads to Enhanced Biomechanical Energy Harvesting in Lead-Free Cs
    Paul T; Sahoo A; Maiti S; Gavali DS; Thapa R; Banerjee R
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34726-34741. PubMed ID: 37440167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screen Printing of Surface-Modified Barium Titanate/Polyvinylidene Fluoride Nanocomposites for High-Performance Flexible Piezoelectric Nanogenerators.
    Li H; Lim S
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films.
    Wang Y; Zhu L; Du C
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular Polyolefin Composites as Piezoelectric Materials: Properties and Applications.
    Klimiec E; Kaczmarek H; Królikowski B; Kołaszczyński G
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene doping to enhance the mechanical energy conversion performances of GR/KNN/P(VDF-TrFE) flexible piezoelectric sensors.
    Zhang X; Xia W; Cao C; Che P; Pan H; Chen Y
    Phys Chem Chem Phys; 2023 Jan; 25(2):1257-1268. PubMed ID: 36530059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designer Peptide-PVDF Composite Films for High-Performance Energy Harvesting.
    Patranabish S; Dhawan S; Haridas V; Sinha A
    Macromol Rapid Commun; 2022 Dec; 43(23):e2200493. PubMed ID: 35866581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion-Boosting the Charge Density and Piezoelectric Response of Ferroelectrets to Significantly High Levels.
    Wang N; van Turnhout J; Daniels R; Wu C; Huo J; Gerhard R; Sotzing G; Cao Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42705-42712. PubMed ID: 36097973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.