BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37705288)

  • 1. Dynamic regulation of the serine loop by distant mutations reveals allostery in cryptochrome1.
    Ozcan O; Gul S; Kavakli IH
    J Biomol Struct Dyn; 2023 Sep; ():1-12. PubMed ID: 37705288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm.
    Gul S; Aydin C; Ozcan O; Gurkan B; Surme S; Baris I; Kavakli IH
    J Biol Chem; 2020 Dec; 295(50):17187-17199. PubMed ID: 33028638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing.
    Fribourgh JL; Srivastava A; Sandate CR; Michael AK; Hsu PL; Rakers C; Nguyen LT; Torgrimson MR; Parico GCG; Tripathi S; Zheng N; Lander GC; Hirota T; Tama F; Partch CL
    Elife; 2020 Feb; 9():. PubMed ID: 32101164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
    Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM
    J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics and neurobiology of circadian clocks in mammals.
    Siepka SM; Yoo SH; Park J; Lee C; Takahashi JS
    Cold Spring Harb Symp Quant Biol; 2007; 72():251-259. PubMed ID: 18419282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus.
    Xu H; Gustafson CL; Sammons PJ; Khan SK; Parsley NC; Ramanathan C; Lee HW; Liu AC; Partch CL
    Nat Struct Mol Biol; 2015 Jun; 22(6):476-484. PubMed ID: 25961797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1.
    Parico GCG; Perez I; Fribourgh JL; Hernandez BN; Lee HW; Partch CL
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27971-27979. PubMed ID: 33106415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES.
    Kondratov RV; Kondratova AA; Lee C; Gorbacheva VY; Chernov MV; Antoch MP
    Cell Cycle; 2006 Apr; 5(8):890-5. PubMed ID: 16628007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN.
    Ono D; Honma KI; Schmal C; Takumi T; Kawamoto T; Fujimoto K; Kato Y; Honma S
    Sci Rep; 2021 Sep; 11(1):19240. PubMed ID: 34584158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation.
    Miller S; Srivastava A; Nagai Y; Aikawa Y; Tama F; Hirota T
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evolutionary hotspot defines functional differences between CRYPTOCHROMES.
    Rosensweig C; Reynolds KA; Gao P; Laothamatas I; Shan Y; Ranganathan R; Takahashi JS; Green CB
    Nat Commun; 2018 Mar; 9(1):1138. PubMed ID: 29556064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK.
    Langmesser S; Tallone T; Bordon A; Rusconi S; Albrecht U
    BMC Mol Biol; 2008 Apr; 9():41. PubMed ID: 18430226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock.
    Griffin EA; Staknis D; Weitz CJ
    Science; 1999 Oct; 286(5440):768-71. PubMed ID: 10531061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2.
    Vitaterna MH; Selby CP; Todo T; Niwa H; Thompson C; Fruechte EM; Hitomi K; Thresher RJ; Ishikawa T; Miyazaki J; Takahashi JS; Sancar A
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12114-9. PubMed ID: 10518585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and functional analyses of circadian genes in mouse oocytes and preimplantation embryos: Cry1 is involved in the meiotic process independently of circadian clock regulation.
    Amano T; Matsushita A; Hatanaka Y; Watanabe T; Oishi K; Ishida N; Anzai M; Mitani T; Kato H; Kishigami S; Saeki K; Hosoi Y; Iritani A; Matsumoto K
    Biol Reprod; 2009 Mar; 80(3):473-83. PubMed ID: 19020302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.
    Khan SK; Xu H; Ukai-Tadenuma M; Burton B; Wang Y; Ueda HR; Liu AC
    J Biol Chem; 2012 Jul; 287(31):25917-26. PubMed ID: 22692217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression.
    Annayev Y; Adar S; Chiou YY; Lieb JD; Sancar A; Ye R
    J Biol Chem; 2014 Feb; 289(8):5013-24. PubMed ID: 24385426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cryptochrome inhibitor KS15 enhances E-box-mediated transcription by disrupting the feedback action of a circadian transcription-repressor complex.
    Jang J; Chung S; Choi Y; Lim HY; Son Y; Chun SK; Son GH; Kim K; Suh YG; Jung JW
    Life Sci; 2018 May; 200():49-55. PubMed ID: 29534992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
    Michael AK; Fribourgh JL; Chelliah Y; Sandate CR; Hura GL; Schneidman-Duhovny D; Tripathi SM; Takahashi JS; Partch CL
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1560-1565. PubMed ID: 28143926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.