BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37705330)

  • 1. Exploring the Barriers in the Aggregation of a Hexadecameric Human Prion Peptide through the Markov State Model.
    Das BK; Singh O; Chakraborty D
    ACS Chem Neurosci; 2023 Oct; 14(19):3622-3645. PubMed ID: 37705330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view.
    Katyal N; Deep S
    Phys Chem Chem Phys; 2017 Jul; 19(29):19120-19138. PubMed ID: 28702592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the Inhibitory Mechanism of Naphthoquinone-Dopamine on the Aggregation of Tau Core Fragments PHF6* and PHF6.
    Zou Y; Qi B; Tan J; Guan L; Zhang Q; Sun Y; Huang F
    ACS Chem Neurosci; 2023 Sep; 14(17):3265-3277. PubMed ID: 37585669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding.
    Kamenik AS; Handle PH; Hofer F; Kahler U; Kraml J; Liedl KR
    J Chem Phys; 2020 Nov; 153(18):185102. PubMed ID: 33187403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation study of amyloid fibril formation by palindromic sequences in prion peptides.
    Wagoner VA; Cheon M; Chang I; Hall CK
    Proteins; 2011 Jul; 79(7):2132-45. PubMed ID: 21557317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational plasticity of the Gerstmann-Sträussler-Scheinker disease peptide as indicated by its multiple aggregation pathways.
    Natalello A; Prokorov VV; Tagliavini F; Morbin M; Forloni G; Beeg M; Manzoni C; Colombo L; Gobbi M; Salmona M; Doglia SM
    J Mol Biol; 2008 Sep; 381(5):1349-61. PubMed ID: 18619462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of protofibril elongation and association involved in Aβ42 peptide aggregation in Alzheimer's disease.
    Ghosh P; Kumar A; Datta B; Rangachari V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S24. PubMed ID: 20946608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways.
    Wang Y; Shao Q; Hall CK
    J Biol Chem; 2016 Oct; 291(42):22093-22105. PubMed ID: 27576687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields.
    Smith MD; Rao JS; Segelken E; Cruz L
    J Chem Inf Model; 2015 Dec; 55(12):2587-95. PubMed ID: 26629886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of PHF6 Peptide of Tau Protein.
    Man VH; He X; Gao J; Wang J
    J Chem Theory Comput; 2021 Oct; 17(10):6458-6471. PubMed ID: 34491058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21459-64. PubMed ID: 21098298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hetero-oligomeric Amyloid Assembly and Mechanism: Prion Fragment PrP(106-126) Catalyzes the Islet Amyloid Polypeptide β-Hairpin.
    Ilitchev AI; Giammona MJ; Olivas C; Claud SL; Lazar Cantrell KL; Wu C; Buratto SK; Bowers MT
    J Am Chem Soc; 2018 Aug; 140(30):9685-9695. PubMed ID: 29989407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early-stage human islet amyloid polypeptide aggregation: Mechanisms behind dimer formation.
    Guo AZ; Fluitt AM; de Pablo JJ
    J Chem Phys; 2018 Jul; 149(2):025101. PubMed ID: 30007378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early aggregation mechanism of Aβ
    Rahman MU; Song K; Da LT; Chen HF
    Int J Biol Macromol; 2022 Apr; 204():606-616. PubMed ID: 35134456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The folding mechanism and key metastable state identification of the PrP127-147 monomer studied by molecular dynamics simulations and Markov state model analysis.
    Zhou S; Wang Q; Wang Y; Yao X; Han W; Liu H
    Phys Chem Chem Phys; 2017 May; 19(18):11249-11259. PubMed ID: 28406520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of amyloid formation by the prion protein H1 peptide as determined by time-dependent ESR.
    Lundberg KM; Stenland CJ; Cohen FE; Prusiner SB; Millhauser GL
    Chem Biol; 1997 May; 4(5):345-55. PubMed ID: 9195875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.