These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37705330)

  • 21. Exploring protein aggregation and self-propagation using lattice models: phase diagram and kinetics.
    Dima RI; Thirumalai D
    Protein Sci; 2002 May; 11(5):1036-49. PubMed ID: 11967361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aggregation of liposomes induced by the toxic peptides Alzheimer's Abetas, human amylin and prion (106-126): facilitation by membrane-bound GM1 ganglioside.
    Kurganov B; Doh M; Arispe N
    Peptides; 2004 Feb; 25(2):217-32. PubMed ID: 15063003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the Force Field on Molecular Dynamics Simulations of the Multidrug Efflux Protein P-Glycoprotein.
    Wang L; O'Mara ML
    J Chem Theory Comput; 2021 Oct; 17(10):6491-6508. PubMed ID: 34506133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models.
    Berhanu WM; Masunov AE
    J Mol Model; 2012 Mar; 18(3):1129-42. PubMed ID: 21674205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for stepwise formation of amyloid fibrils by the mouse prion protein.
    Jain S; Udgaonkar JB
    J Mol Biol; 2008 Oct; 382(5):1228-41. PubMed ID: 18687339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulations on the oligomer-formation process of the GNNQQNY peptide from yeast prion protein Sup35.
    Zhang Z; Chen H; Bai H; Lai L
    Biophys J; 2007 Sep; 93(5):1484-92. PubMed ID: 17483185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation.
    Chiricotto M; Melchionna S; Derreumaux P; Sterpone F
    J Chem Phys; 2016 Jul; 145(3):035102. PubMed ID: 27448906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Helical intermediate formation and its role in amyloids of an amphibian antimicrobial peptide.
    Prasad AK; Martin LL; Panwar AS
    Phys Chem Chem Phys; 2023 May; 25(17):12134-12147. PubMed ID: 37070341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. β-Turn exchanges in the α-synuclein segment 44-TKEG-47 reveal high sequence fidelity requirements of amyloid fibril elongation.
    Agerschou ED; Schützmann MP; Reppert N; Wördehoff MM; Shaykhalishahi H; Buell AK; Hoyer W
    Biophys Chem; 2021 Feb; 269():106519. PubMed ID: 33333378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the Interplay between Disordered and Ordered Oligomer Channels on the Aggregation Energy Landscapes of α-Synuclein.
    Chen X; Chen M; Wolynes PG
    J Phys Chem B; 2022 Jul; 126(28):5250-5261. PubMed ID: 35815598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM.
    Vitrenko YA; Gracheva EO; Richmond JE; Liebman SW
    J Biol Chem; 2007 Jan; 282(3):1779-87. PubMed ID: 17121829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amyloid fibrils of human prion protein are spun and woven from morphologically disordered aggregates.
    Almstedt K; Nyström S; Nilsson KP; Hammarström P
    Prion; 2009; 3(4):224-35. PubMed ID: 19923901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth.
    Watzky MA; Morris AM; Ross ED; Finke RG
    Biochemistry; 2008 Oct; 47(40):10790-800. PubMed ID: 18785757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seeding and cross-seeding fibrillation of N-terminal prion protein peptides PrP(120-144).
    Wang Y; Hall CK
    Protein Sci; 2018 Jul; 27(7):1304-1313. PubMed ID: 29637634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Aβ
    Man VH; He X; Derreumaux P; Ji B; Xie XQ; Nguyen PH; Wang J
    J Chem Theory Comput; 2019 Feb; 15(2):1440-1452. PubMed ID: 30633867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.
    Sun Y; Qian Z; Wei G
    Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy barriers for HET-s prion forming domain amyloid formation.
    Sabaté R; Castillo V; Espargaró A; Saupe SJ; Ventura S
    FEBS J; 2009 Sep; 276(18):5053-64. PubMed ID: 19682303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains.
    Jiang Y; Li H; Zhu L; Zhou JM; Perrett S
    J Biol Chem; 2004 Jan; 279(5):3361-9. PubMed ID: 14610069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Refinement of the application of the GROMOS 54A7 force field to β-peptides.
    Lin Z; van Gunsteren WF
    J Comput Chem; 2013 Dec; 34(32):2796-805. PubMed ID: 24122968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.