These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37705503)

  • 1. Engineering topological states in a two-dimensional honeycomb lattice.
    Zhang Y; Zhang J; Yang W; Zhang H; Jia J
    Phys Chem Chem Phys; 2023 Sep; 25(37):25398-25407. PubMed ID: 37705503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plumbene on a Magnetic Substrate: A Combined Scanning Tunneling Microscopy and Density Functional Theory Study.
    Bihlmayer G; Sassmannshausen J; Kubetzka A; Blügel S; von Bergmann K; Wiesendanger R
    Phys Rev Lett; 2020 Mar; 124(12):126401. PubMed ID: 32281856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Anomalous Hall Effect in Magnetic Doped Topological Insulators and Ferromagnetic Spin-Gapless Semiconductors-A Perspective Review.
    Nadeem M; Hamilton AR; Fuhrer MS; Wang X
    Small; 2020 Oct; 16(42):e1904322. PubMed ID: 32914584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional honeycomb-kagome Ta
    Zhang L; Zhang CW; Zhang SF; Ji WX; Li P; Wang PJ
    Nanoscale; 2019 Mar; 11(12):5666-5673. PubMed ID: 30865199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-temperature and multichannel quantum anomalous Hall effect in pristine and alkali-metal-doped CrBr
    Zhang H; Yang W; Ning Y; Xu X
    Nanoscale; 2020 Jul; 12(26):13964-13972. PubMed ID: 32578653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological insulator states in a honeycomb lattice of s-triazines.
    Wang A; Zhang X; Zhao M
    Nanoscale; 2014 Oct; 6(19):11157-62. PubMed ID: 25119110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Substrate-Orbital-Filtering Effect to Realize the Large-Gap Quantum Spin Hall Effect.
    Zhang H; Wang Y; Yang W; Zhang J; Xu X; Liu F
    Nano Lett; 2021 Jul; 21(13):5828-5833. PubMed ID: 34156241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Induced Quantum Spin Hall Effect in Two-Dimensional Methyl-Functionalized Silicene SiCH₃.
    Ren CC; Ji WX; Zhang SF; Zhang CW; Li P; Wang PJ
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30205466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum spin Hall insulators and topological Rashba-splitting edge states in two-dimensional CX
    Wang SS; Sun W; Dong S
    Phys Chem Chem Phys; 2021 Jan; 23(3):2134-2140. PubMed ID: 33437975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Dirac spin gapless semiconductors in a two-dimensional oxalate based organic honeycomb-kagome lattice.
    Xing J; Jiang X; Liu Z; Qi Y; Zhao J
    Nanoscale; 2022 Feb; 14(5):2023-2029. PubMed ID: 35075466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional quadratic Weyl points, nodal loops, and spin-orbit Dirac points in PtS, PtSe, and PtTe monolayers.
    Li JY; Kang XY; Zhang Y; Li S; Yao Y
    Phys Chem Chem Phys; 2024 Jan; 26(5):4159-4165. PubMed ID: 38230417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.
    Hu XK; Lyu JK; Zhang CW; Wang PJ; Ji WX; Li P
    Phys Chem Chem Phys; 2018 May; 20(19):13632-13636. PubMed ID: 29737999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and realization of topological Dirac fermions on a triangular lattice.
    Bauernfeind M; Erhardt J; Eck P; Thakur PK; Gabel J; Lee TL; Schäfer J; Moser S; Di Sante D; Claessen R; Sangiovanni G
    Nat Commun; 2021 Sep; 12(1):5396. PubMed ID: 34518548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large band gap quantum spin Hall insulators in plumbene monolayer decorated with amidogen, hydroxyl and thiol functional groups.
    Tabassum SJ; Tanisha TT; Hiramony NT; Subrina S
    Nanoscale Adv; 2023 Jun; 5(12):3357-3367. PubMed ID: 37325544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum anomalous Hall effect in M
    Zhang B; Deng F; Chen X; Lv X; Wang J
    J Phys Condens Matter; 2022 Oct; 34(47):. PubMed ID: 36162403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A first theoretical realization of honeycomb topological magnon insulator.
    Owerre SA
    J Phys Condens Matter; 2016 Sep; 28(38):386001. PubMed ID: 27437569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-Orbit Coupling Electronic Structures of Organic-Group Functionalized Sb and Bi Topological Monolayers.
    Gong Q; Zhang G
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantiomorphic kagome bands in a two-dimensional covalent organic framework with non-trivial magnetic and topological properties.
    Gao Q; Sun X; Xu X; Jiang X; Wang Z; Yang L; Li D; Cui B; Liu D
    Phys Chem Chem Phys; 2024 Jan; 26(3):2066-2072. PubMed ID: 38126725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological Dirac states in transition-metal monolayers on graphyne.
    Wang K; Zhang Y; Zhao W; Li P; Ding JW; Xie GF; Guo ZX
    Phys Chem Chem Phys; 2019 May; 21(18):9310-9316. PubMed ID: 30993296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.