These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37705925)

  • 1. 3D free-assembly modular microfluidics inspired by movable type printing.
    Huang S; Wu J; Zheng L; Long Y; Chen J; Li J; Dai B; Lin F; Zhuang S; Zhang D
    Microsyst Nanoeng; 2023; 9():111. PubMed ID: 37705925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
    Lee Y; Kim B; Oh I; Choi S
    Small; 2018 Dec; 14(52):e1802769. PubMed ID: 30375722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D-Printed Standardized Modular Microfluidic System for Droplet Generation.
    Chen J; Huang S; Long Y; Wang K; Guan Y; Hou L; Dai B; Zhuang S; Zhang D
    Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials.
    Visser CW; Kamperman T; Karbaat LP; Lohse D; Karperien M
    Sci Adv; 2018 Jan; 4(1):eaao1175. PubMed ID: 29399628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate.
    Kotz F; Mader M; Dellen N; Risch P; Kick A; Helmer D; Rapp BE
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofiber self-consistent additive manufacturing process for 3D microfluidics.
    Qiu B; Chen X; Xu F; Wu D; Zhou Y; Tu W; Jin H; He G; Chen S; Sun D
    Microsyst Nanoeng; 2022; 8():102. PubMed ID: 36119377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and inexpensive microfluidic electrode integration with conductive ink.
    McIntyre D; Lashkaripour A; Densmore D
    Lab Chip; 2020 Oct; 20(20):3690-3695. PubMed ID: 32895672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip.
    Compera N; Atwell S; Wirth J; Wolfrum B; Meier M
    Lab Chip; 2021 Aug; 21(15):2986-2996. PubMed ID: 34143169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Incubation and Splitting in Open Microfluidic Channels.
    Berry SB; Lee JJ; Berthier J; Berthier E; Theberge AB
    Anal Methods; 2019 Sep; 11(35):4528-4536. PubMed ID: 32528558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks.
    Owens CE; Hart AJ
    Lab Chip; 2018 Mar; 18(6):890-901. PubMed ID: 29372201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Prototyping of Multilayer Microphysiological Systems.
    Hosic S; Bindas AJ; Puzan ML; Lake W; Soucy JR; Zhou F; Koppes RA; Breault DT; Murthy SK; Koppes AN
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2949-2963. PubMed ID: 34275297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-Based Design.
    Qiu J; Gao Q; Zhao H; Fu J; He Y
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2606-2616. PubMed ID: 33465916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rubik's Cube as Reconfigurable Microfluidic Platform for Rapid Setup and Switching of Analytical Devices.
    Lai X; Sun Y; Yang M; Wu H
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.