These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 37706226)

  • 1. Covalent Organic Framework-based Solid-State Electrolytes, Electrode Materials, and Separators for Lithium-ion Batteries.
    Zhu Y; Bai Q; Ouyang S; Jin Y; Zhang W
    ChemSusChem; 2024 Jan; 17(1):e202301118. PubMed ID: 37706226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of covalent organic frameworks in Lithium-Sulfur batteries: A mini review for current research progress.
    Wang Z; Pan F; Zhao Q; Lv M; Zhang B
    Front Chem; 2022; 10():1055649. PubMed ID: 36339042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries.
    Wang Y; Yang X; Li P; Cui F; Wang R; Li X
    Macromol Rapid Commun; 2023 Jun; 44(11):e2200760. PubMed ID: 36385727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries.
    Qiao Y; Zeng X; Wang H; Long J; Tian Y; Lan J; Yu Y; Yang X
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity.
    Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries.
    Cui S; Miao W; Peng H; Ma G; Lei Z; Zhu L; Xu Y
    Chemistry; 2024 Feb; 30(12):e202303320. PubMed ID: 38126628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Development in Separators for High-Temperature Lithium-Ion Batteries.
    Waqas M; Ali S; Feng C; Chen D; Han J; He W
    Small; 2019 Aug; 15(33):e1901689. PubMed ID: 31116914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic Covalent Organic Framework Solid-State Electrolytes.
    Kim Y; Li C; Huang J; Yuan Y; Tian Y; Zhang W
    Adv Mater; 2024 Oct; 36(40):e2407761. PubMed ID: 39155807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the Mechanism of Covalent Organic Frameworks-Based Functional Separators in High-Energy Batteries.
    Li W; Hao Z; Cao S; Chen S; Wang X; Yin H; Tao X; Dai Y; Cong Y; Ju J
    Small; 2024 Nov; 20(46):e2405396. PubMed ID: 39136423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries.
    Dantas R; Ribeiro C; Souto M
    Chem Commun (Camb); 2023 Dec; 60(2):138-149. PubMed ID: 38051115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress and Perspectives on Covalent-Organic Frameworks (COFs) and Composites for Various Energy Applications.
    Kumar R; Naz Ansari S; Deka R; Kumar P; Saraf M; Mobin SM
    Chemistry; 2021 Oct; 27(55):13669-13698. PubMed ID: 34288163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids.
    Chen R; Bresser D; Saraf M; Gerlach P; Balducci A; Kunz S; Schröder D; Passerini S; Chen J
    ChemSusChem; 2020 May; 13(9):2205-2219. PubMed ID: 31995281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges.
    Pavlovskii AA; Pushnitsa K; Kosenko A; Novikov P; Popovich AA
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review.
    Wang Z; Jin W; Huang X; Lu G; Li Y
    Chem Rec; 2020 Oct; 20(10):1198-1219. PubMed ID: 32881320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Covalent Organic Frameworks for Multi-Valent Metal Ion Batteries.
    Luo XX; Wang XT; Ang EH; Zhang KY; Zhao XX; Lü HY; Wu XL
    Chemistry; 2023 Jan; 29(6):e202202723. PubMed ID: 36250748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Sodium Ion Storage by Multifunctional Covalent Organic Frameworks for Sustainable Sodium Batteries.
    Shehab MK; El-Kaderi HM
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14750-14758. PubMed ID: 38498858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity.
    Shahzad U; Marwani HM; Saeed M; Asiri AM; Repon MR; Althomali RH; Rahman MM
    Chem Rec; 2024 Jan; 24(1):e202300285. PubMed ID: 37986206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries.
    Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX
    ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries.
    Xue J; Sun Z; Sun B; Zhao C; Yang Y; Huo F; Cabot A; Liu HK; Dou S
    ACS Nano; 2024 Jul; 18(27):17439-17468. PubMed ID: 38934250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.