BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37706459)

  • 21. Probing the intracellular refractive index and molecular interaction of gold nanoparticles in HeLa cells using single particle spectroscopy.
    Mohsin ASM; Salim MB
    Int J Nanomedicine; 2018; 13():6019-6028. PubMed ID: 30323589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.
    Liu F; Dong C; Ren J
    Nanoscale; 2018 Mar; 10(11):5309-5317. PubMed ID: 29503992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.
    Drabik D; Przybyło M; Sikorski A; Langner M
    J Fluoresc; 2016 Mar; 26(2):661-9. PubMed ID: 26695945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering.
    Liu X; Dai Q; Austin L; Coutts J; Knowles G; Zou J; Chen H; Huo Q
    J Am Chem Soc; 2008 Mar; 130(9):2780-2. PubMed ID: 18257576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photobleaching in two-photon scanning fluorescence correlation spectroscopy.
    Petrásek Z; Schwille P
    Chemphyschem; 2008 Jan; 9(1):147-58. PubMed ID: 18072191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel evanescent wave scattering imaging method for single gold particle tracking in solution and on cell membrane.
    He H; Ren J
    Talanta; 2008 Oct; 77(1):166-71. PubMed ID: 18804615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection.
    Du B; Li Z; Cheng Y
    Talanta; 2008 May; 75(4):959-64. PubMed ID: 18585169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR
    Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring the Hydrodynamic Radius of Colloidal Quantum Dots by Fluorescence Correlation Spectroscopy.
    Almeida DB; de Thomaz AA
    Methods Mol Biol; 2020; 2135():85-93. PubMed ID: 32246329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA measurements by using fluorescence correlation spectroscopy and two-color fluorescence cross correlation spectroscopy.
    Takagi T; Kii H; Kinjo M
    Curr Pharm Biotechnol; 2004 Apr; 5(2):199-204. PubMed ID: 15078154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors.
    Viswambari Devi R; Doble M; Verma RS
    Biosens Bioelectron; 2015 Jun; 68():688-698. PubMed ID: 25660660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and characterization of optical nanorulers of single nanoparticles using optical microscopy and spectroscopy.
    Nallathamby PD; Huang T; Xu XH
    Nanoscale; 2010 Sep; 2(9):1715-22. PubMed ID: 20820702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.
    Lamb DC; Müller BK; Bräuchle C
    Curr Pharm Biotechnol; 2005 Oct; 6(5):405-14. PubMed ID: 16248814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-photon excited photoluminescence of gold nanospheres and its application in prostate specific antigen detection via fluorescence correlation spectroscopy (FCS).
    Craciun AM; Suarasan S; Focsan M; Astilean S
    Talanta; 2021 Jun; 228():122242. PubMed ID: 33773714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer.
    Zhang JQ; Wang YS; He Y; Jiang T; Yang HM; Tan X; Kang RH; Yuan YK; Shi LF
    Anal Biochem; 2010 Feb; 397(2):212-7. PubMed ID: 19849997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes.
    Chen Z; Wang Z; Chen J; Wang S; Huang X
    Analyst; 2012 Jul; 137(13):3132-7. PubMed ID: 22624147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interferometry and fluorescence detection for simultaneous analysis of labeled and unlabeled nanoparticles in solution.
    Wennmalm S; Widengren J
    J Am Chem Soc; 2012 Dec; 134(48):19516-9. PubMed ID: 23157513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly sensitive and selective determination of hydrogen sulfide by resonance light scattering technique based on silver nanoparticles.
    Kuang Y; Chen S; Long Y
    Anal Bioanal Chem; 2017 Jun; 409(16):4001-4008. PubMed ID: 28417178
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.