These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37706574)

  • 1. Searching High-Potential Dihydroxynaphthalene Cathode for Rocking-Chair All-Organic Aqueous Proton Batteries.
    Zhao G; Yan X; Dai Y; Xiong J; Zhao Q; Wang X; Yu H; Gao J; Zhang N; Hu M; Yang J
    Small; 2024 Jan; 20(4):e2306071. PubMed ID: 37706574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naphthalene dianhydride organic anode for a 'rocking-chair' zinc-proton hybrid ion battery.
    Ghosh M; Vijayakumar V; Kurian M; Dilwale S; Kurungot S
    Dalton Trans; 2021 Mar; 50(12):4237-4243. PubMed ID: 33751012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.
    Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rocking-Chair Proton Batteries with Conducting Redox Polymer Active Materials and Protic Ionic Liquid Electrolytes.
    Wang H; Emanuelsson R; Karlsson C; Jannasch P; Strømme M; Sjödin M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19099-19108. PubMed ID: 33856185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ni-doped Bi
    Han M; Qian Y; Li X; Wang N; Song T; Liu L; Wang X; Wu X; Law MK; Long B
    J Colloid Interface Sci; 2023 Sep; 645():483-492. PubMed ID: 37156157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Aqueous Conducting Redox-Polymer-Based Proton Battery that Can Withstand Rapid Constant-Voltage Charging and Sub-Zero Temperatures.
    Strietzel C; Sterby M; Huang H; Strømme M; Emanuelsson R; Sjödin M
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9631-9638. PubMed ID: 32180324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures.
    Lakshmi KCS; Vedhanarayanan B; Cheng HY; Ji X; Shen HH; Lin TW
    J Colloid Interface Sci; 2022 Aug; 619():123-131. PubMed ID: 35378474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ preparation of amorphous VO
    Wu J; Yang Z; Chen H
    J Colloid Interface Sci; 2023 Nov; 649():372-383. PubMed ID: 37354794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activating the Stepwise Intercalation-Conversion Reaction of Layered Copper Sulfide toward Extremely High Capacity Zinc-Metal-Free Anodes for Rocking-Chair Zinc-Ion Batteries.
    Lv Z; Wang B; Ye M; Zhang Y; Yang Y; Li CC
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1126-1137. PubMed ID: 34933560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing the Structure and Electrochemical Properties of Benzoquinone-Embedded COF via Heat Treatment for a High-Energy Organic Cathode.
    Amin K; Mehmood W; Zhang J; Ahmed S; Mao L; Li CF; Zhang BB; Wei Z
    ACS Appl Mater Interfaces; 2024 Sep; 16(37):48771-48781. PubMed ID: 37968096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion-Rocking Chair Batteries with Tuneable Voltage using Viologen- and Phenothiazine Polymer-based Electrodes.
    Bhosale M; Schmidt C; Penert P; Studer G; Esser B
    ChemSusChem; 2024 Mar; 17(5):e202301143. PubMed ID: 37902416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High Potential Polyanion Cathode Material for Rechargeable Mg-Ion Batteries.
    Li C; Lin L; Wu W; Sun X
    Small Methods; 2022 Aug; 6(8):e2200363. PubMed ID: 35689302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BiOI Nanopaper As a High-Capacity, Long-Life and Insertion-Type Anode for a Flexible Quasi-Solid-State Zn-Ion Battery.
    Zhang Q; Duan T; Xiao M; Pei Y; Wang X; Zhi C; Wu X; Long B; Wu Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25516-25523. PubMed ID: 35638180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous Organic Hydrogen Gas Proton Batteries with Ultrahigh-Rate and Ultralow-Temperature Performance.
    Liu S; Jin S; Jiang T; Sajid M; Xu J; Zhang K; Fan Y; Peng Q; Zheng X; Xie Z; Liu Z; Zhu Z; Wang X; Nian Q; Chen J; Li K; Shen C; Chen W
    Nano Lett; 2023 Oct; 23(20):9664-9671. PubMed ID: 37638682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous Calcium-Ion Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance.
    Cang R; Zhao C; Ye K; Yin J; Zhu K; Yan J; Wang G; Cao D
    ChemSusChem; 2020 Aug; 13(15):3911-3918. PubMed ID: 32427411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Catechol-Grafting PEDOT Cathode for an All-Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity.
    Zhu M; Zhao L; Ran Q; Zhang Y; Peng R; Lu G; Jia X; Chao D; Wang C
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103896. PubMed ID: 34914857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries.
    Lin Z; Shi HY; Lin L; Yang X; Wu W; Sun X
    Nat Commun; 2021 Jul; 12(1):4424. PubMed ID: 34285215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting commercial Bi
    Yue H; Han M; Li X; Song T; Pei Y; Wang X; Wu X; Duan T; Long B
    J Colloid Interface Sci; 2023 Dec; 651():558-566. PubMed ID: 37562298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiOIO
    Qian Y; Li X; Wang H; Song T; Pei Y; Liu L; Wang X; Deng Q; Wu X; Long B
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17757-17766. PubMed ID: 37010192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.