These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37706909)

  • 41. Rayleigh scattering cross sections of argon, carbon dioxide, sulfur hexafluoride, and methane in the UV-A region using Broadband Cavity Enhanced Spectroscopy.
    Wilmouth DM; Sayres DS
    J Quant Spectrosc Radiat Transf; 2019 Sep; 234():32-39. PubMed ID: 31631911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Angular dependence of scaftering from Escherichia coli cells.
    Cross DA; Latimer P
    Appl Opt; 1972 May; 11(5):1225-8. PubMed ID: 20119120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nano-Crystallization of Ln-Fluoride Crystals in Glass-Ceramics via Inducing of Yb
    Li J; Long Y; Zhao Q; Zheng S; Fang Z; Guan BO
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33919614
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Approach to hyperuniformity in a metallic glass-forming material exhibiting a fragile to strong glass transition.
    Zhang H; Wang X; Zhang J; Yu HB; Douglas JF
    Eur Phys J E Soft Matter; 2023 Jun; 46(6):50. PubMed ID: 37380868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime.
    Braun B; Dorgan JR; Chandler JP
    Biomacromolecules; 2008 Apr; 9(4):1255-63. PubMed ID: 18357993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Submillisecond-response and scattering-free infrared liquid crystal phase modulators.
    Sun J; Chen Y; Wu ST
    Opt Express; 2012 Aug; 20(18):20124-9. PubMed ID: 23037065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Absorption and scattering of light from ensembles of randomly oriented aggregates.
    Karlsson A; Yi T; Bengtsson PE
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):316-24. PubMed ID: 23456107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanograined highly transparent yttria ceramics.
    Serivalsatit K; Kokuoz BY; Kokuoz B; Ballato J
    Opt Lett; 2009 Apr; 34(7):1033-5. PubMed ID: 19340210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Limited possibility for quantifying mean particle size by logarithmic light-scattering spectroscopy.
    Johns M; Liu H
    Appl Opt; 2003 Jun; 42(16):2968-71. PubMed ID: 12790446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical dephasing of triply ionized rare earths in transparent glass ceramics containing LaF3 nanocrystals.
    Zheng H; Zhang X; Gao D; Meltzer RS
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1214-7. PubMed ID: 18468126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Core-Shell Modeling of Light Scattering by Vesicles: Effect of Size, Contents, and Lamellarity.
    Wang A; Chan Miller C; Szostak JW
    Biophys J; 2019 Feb; 116(4):659-669. PubMed ID: 30686489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rayleigh-Gans scattering approximation: surprisingly useful for understanding backscattering from disk-like particles.
    Gordon HR
    Opt Express; 2007 Apr; 15(9):5572-88. PubMed ID: 19532814
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental apparatus for measurement of the angular, polarization, and wavelength dependence of light scattering from the visible to the infrared in bulk glass samples.
    Neeves AE; Reed WA
    Appl Opt; 1992 Apr; 31(12):2072-7. PubMed ID: 20720861
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and Luminescence Properties of Transparent Germanate Glass-Ceramics Co-Doped with Ni
    Lesniak M; Kochanowicz M; Baranowska A; Golonko P; Kuwik M; Zmojda J; Miluski P; Dorosz J; Pisarski WA; Pisarska J; Dorosz D
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Transparent Fluorotellurite Glass-Ceramics: Structural Investigations and Luminescence Properties.
    Laval JP; Duclère JR; Couderc V; Allix M; Genevois C; Sarou-Kanian V; Fayon F; Coulon PE; Chenu S; Colas M; Cornette J; Thomas P; Delaizir G
    Inorg Chem; 2019 Dec; 58(24):16387-16401. PubMed ID: 31790218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photoluminescence properties of Er
    Marques de Souza JM; Lima KO; Ferrari JL; Maia LJQ; Rocha Gonçalves R; Falci RF; Manzani D
    Dalton Trans; 2022 Mar; 51(10):4087-4096. PubMed ID: 35179526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fractal and spinodal-decomposed turbidities of nanoporous glass: fluctuation picture in turbid and transparent Vycor.
    Ogawa S; Nakamura J
    J Opt Soc Am A Opt Image Sci Vis; 2017 Apr; 34(4):449-463. PubMed ID: 28375339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.
    Yoshimura HN; Chimanski A; Cesar PF
    Dent Mater; 2015 Oct; 31(10):1188-97. PubMed ID: 26187531
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of the Method of Preparation and Dispersion Media on the Optical Properties and Particle Sizes of Aqueous Dispersions of a Double-Chain Cationic Surfactant.
    Hsieh AH; Franses EI; Corti DS
    Langmuir; 2021 Jul; 37(27):8290-8304. PubMed ID: 34185999
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhance light penetration in tissue for high resolution optical imaging techniques by the use of biocompatible chemical agents.
    Wang RK; Tuchin VV
    J Xray Sci Technol; 2002 Jan; 10(3):167-76. PubMed ID: 22388046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.