These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37706915)
1. Experimental development of a gated UV-induced spectroscopic lidar for the daytime study of plant ecology and photosynthesis: multi-modal measurement of fluorescence of trees growing in a field and Mie-Raman-fluorescence of the surrounding atmosphere. Saito Y; Doi A Appl Opt; 2023 Jun; 62(16):4262-4267. PubMed ID: 37706915 [TBL] [Abstract][Full Text] [Related]
2. Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China. Wang Y; Huang Z; Zhou T; Bi J; Shi J Opt Express; 2023 Jun; 31(13):22157-22169. PubMed ID: 37381296 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer. Sugimoto N; Huang Z; Nishizawa T; Matsui I; Tatarov B Opt Express; 2012 Sep; 20(19):20800-7. PubMed ID: 23037203 [TBL] [Abstract][Full Text] [Related]
4. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water. Saito Y; Kakuda K; Yokoyama M; Kubota T; Tomida T; Park HD Appl Opt; 2016 Aug; 55(24):6727-34. PubMed ID: 27556995 [TBL] [Abstract][Full Text] [Related]
5. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere. Hua D; Uchida M; Kobayashi T Appl Opt; 2005 Mar; 44(7):1315-22. PubMed ID: 15765712 [TBL] [Abstract][Full Text] [Related]
6. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Whiteman DN Appl Opt; 2003 May; 42(15):2571-92. PubMed ID: 12776994 [TBL] [Abstract][Full Text] [Related]
7. Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory. Mao J; Zhang Y; Li J; Gong X; Zhao H; Rao Z Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981365 [TBL] [Abstract][Full Text] [Related]
8. Oceanic lidar: radiative transfer in the atmosphere at operating altitudes from 100 m to 100 km. Bartsch B; Braeske T; Reuter R Appl Opt; 1993 Nov; 32(33):6732-41. PubMed ID: 20856526 [TBL] [Abstract][Full Text] [Related]
9. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere. Hua D; Kobayashi T Appl Opt; 2005 Oct; 44(30):6474-8. PubMed ID: 16252659 [TBL] [Abstract][Full Text] [Related]
10. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere. Hua D; Uchida M; Kobayashi T Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711 [TBL] [Abstract][Full Text] [Related]
11. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling. Wang Z; Mao J; Li J; Zhao H; Zhou C; Sheng H Appl Opt; 2017 Jul; 56(20):5620-5629. PubMed ID: 29047703 [TBL] [Abstract][Full Text] [Related]
12. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique. Mei L; Guan P; Yang Y; Kong Z Opt Express; 2017 Aug; 25(16):A628-A638. PubMed ID: 29041035 [TBL] [Abstract][Full Text] [Related]
13. Preliminary measurements of fluorescent aerosol number concentrations using a laser-induced fluorescence lidar. Rao Z; He T; Hua D; Wang Y; Wang X; Chen Y; Le J Appl Opt; 2018 Sep; 57(25):7211-7215. PubMed ID: 30182981 [TBL] [Abstract][Full Text] [Related]
14. Novel Simulation and Analysis of Mie-Scattering Lidar for Detecting Atmospheric Turbulence Based on Non-Kolmogorov Turbulence Power Spectrum Model. Zhang Y; Mao J; Li J; Gong X Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554168 [TBL] [Abstract][Full Text] [Related]
15. Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere. Liu F; Yi F Appl Opt; 2013 Oct; 52(28):6884-95. PubMed ID: 24085202 [TBL] [Abstract][Full Text] [Related]
16. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis. Di H; Zhang Z; Hua H; Zhang J; Hua D; Wang Y; He T Opt Express; 2017 Mar; 25(5):5068-5080. PubMed ID: 28380772 [TBL] [Abstract][Full Text] [Related]
17. Lateral scanning Raman scattering lidar for accurate measurement of atmospheric temperature and water vapor from ground to height of interest. Yang F; Gao F; Zhang C; Li X; Gao X; Hua D; Wang L; Xin W; Stanič S Opt Lett; 2023 May; 48(10):2595-2598. PubMed ID: 37186717 [TBL] [Abstract][Full Text] [Related]
18. Temperature measurement of cloud or haze layers based on Raman rotational and vibrational spectra. Li Q; Di H; Hua D; Yan Q; Yuan Y; Yang T Opt Express; 2022 Jun; 30(13):23124-23137. PubMed ID: 36224999 [TBL] [Abstract][Full Text] [Related]
19. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer. Arshinov Y; Bobrovnikov S; Serikov I; Ansmann A; Wandinger U; Althausen D; Mattis I; Müller D Appl Opt; 2005 Jun; 44(17):3593-603. PubMed ID: 16007859 [TBL] [Abstract][Full Text] [Related]
20. Preliminary exploration of atmospheric water vapor, liquid water and ice water by ultraviolet Raman lidar. Yufeng W; Qing W; Dengxin H Opt Express; 2019 Dec; 27(25):36311-36328. PubMed ID: 31873413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]