These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37706956)

  • 1. Optical micro mechanical accelerometer with double grating: design and simulation.
    Zhang Y; Ma H
    Appl Opt; 2023 Aug; 62(22):6016-6024. PubMed ID: 37706956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution micro-optical accelerometer with an electromagnetic driver: design and analysis.
    Gao S; Zhou Z; Huang Z; Feng L
    Appl Opt; 2021 Sep; 60(26):7989-7994. PubMed ID: 34613059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Demonstration of an In-Plane Micro-Optical-Electro-Mechanical-System Accelerometer Based on Talbot Effect of Dual-Layer Gratings.
    Chen W; Jin L; Wang Z; Peng H; Li M
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-opto-electro-mechanical systems accelerometer based on the Talbot effect of double-layer diffraction gratings.
    Jin L; Wang C; Jin L; Chen W; Xu H; Cui M; Li M
    Appl Opt; 2022 Jun; 61(18):5386-5391. PubMed ID: 36256105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Modification of a High-Resolution Optical Interferometer Accelerometer.
    Yao Y; Pan D; Wang J; Dong T; Guo J; Wang C; Geng A; Fang W; Lu Q
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-opto-electro-mechanical gyroscope based on the Talbot effect of a single-layer near-field diffraction grating.
    Xie K; Zhang R; Xin C; Jin L; Wang Z; Wang Z; Li M; Zhao H
    Appl Opt; 2021 May; 60(13):3724-3731. PubMed ID: 33983304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity improvement of micro-grating accelerometer based on differential detection method.
    Wang X; Feng L; Yao B; Ren X
    Appl Opt; 2013 Jun; 52(18):4091-6. PubMed ID: 23842148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Chip-Based Nano-Optomechanical Accelerometer Based on Subwavelength Grating Pair and Rotated Serpentine Springs.
    Lu Q; Bai J; Wang K; Chen P; Fang W; Wang C
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29949871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution micro-grating accelerometer based on a gram-scale proof mass.
    Gao S; Zhou Z; Zhang Y; Deng K; Feng L
    Opt Express; 2019 Nov; 27(23):34298-34311. PubMed ID: 31878480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Simulation Study of an Optical Mode-Localized MEMS Accelerometer.
    Feng Y; Yang W; Zou X
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linearization signal conditioning circuit for tri-axial micro-grating MOEMS accelerometer.
    Jin L; Xie K; Du Y; Li M
    Opt Express; 2024 Mar; 32(6):10241-10251. PubMed ID: 38571240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Two-Axis Differential Resonant Accelerometer Based on Graphene with Transmission Beams.
    Xiao Y; Hu F; Zhang Y; Zheng J; Qin S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error.
    Zhang Y; Gao S; Xiong H; Feng L
    Opt Express; 2019 Mar; 27(5):6565-6579. PubMed ID: 30876239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Development of a MOEMS Accelerometer Using SOI Technology.
    Mireles J; Sauceda Á; Jiménez A; Ramos M; Gonzalez-Landaeta R
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on micro-leverage in monolithic quartz resonant accelerometer.
    Li C; Han C; Zhao Y; Zhang Q; Li B
    Rev Sci Instrum; 2021 Feb; 92(2):025005. PubMed ID: 33648126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Optical Measuring Transducer for a Micro-Opto-Electro-Mechanical Micro-g Accelerometer Based on the Optical Tunneling Effect.
    Barbin E; Nesterenko T; Koleda A; Shesterikov E; Kulinich I; Kokolov A
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.
    Jian A; Wei C; Guo L; Hu J; Tang J; Liu J; Zhang X; Sang S
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28218642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers.
    Sanjuan J; Sinyukov A; Warrayat MF; Guzman F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Python-Based Open-Source Electro-Mechanical Co-Optimization System for MEMS Inertial Sensors.
    Amendoeira Esteves R; Wang C; Kraft M
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-to-fine optical MEMS accelerometer design and simulation.
    Rahimi M; Taghavi M; Malekmohammad M
    Appl Opt; 2022 Jan; 61(2):629-637. PubMed ID: 35200906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.