These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37706992)

  • 1. Enhanced microwave metrology using an optical grating in Rydberg atoms.
    Zhao S; Yin Z; Song X; Jia Z; Wang L; Chen B; Zeng Q; Peng Y
    Appl Opt; 2023 May; 62(14):3747-3752. PubMed ID: 37706992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave Electrometry with Multi-Photon Coherence in Rydberg Atoms.
    Yin Z; Li Q; Song X; Jia Z; Parniak M; Lu X; Peng Y
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposal of Rydberg atomic receiver for amplitude-modulated microwave signals with active Raman gain.
    Cai Y; Wang J; Lin L; Lu X; Li Y; Peng Y
    Appl Opt; 2020 Oct; 59(28):8612-8617. PubMed ID: 33104542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms.
    Jia F; Yu Y; Liu X; Zhang X; Zhang L; Wang F; Mei J; Zhang J; Xie F; Zhong Z
    Appl Opt; 2020 Sep; 59(27):8253-8258. PubMed ID: 32976410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency.
    Zhao J; Zhu X; Zhang L; Feng Z; Li C; Jia S
    Opt Express; 2009 Aug; 17(18):15821-6. PubMed ID: 19724582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced spectral profile in the study of Doppler-broadened Rydberg ensembles.
    Wu BH; Chuang YW; Chen YH; Yu JC; Chang MS; Yu IA
    Sci Rep; 2017 Aug; 7(1):9726. PubMed ID: 28852012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of radio-frequency field phase with interacting dark states in Rydberg atoms.
    Lin L; He Y; Yin Z; Li D; Jia Z; Zhao Y; Chen B; Peng Y
    Appl Opt; 2022 Feb; 61(6):1427-1433. PubMed ID: 35201026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted Rydberg electromagnetically induced transparency.
    Vogt T; Gross C; Gallagher TF; Li W
    Opt Lett; 2018 Apr; 43(8):1822-1825. PubMed ID: 29652373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement.
    Song Z; Zhang W; Wu Q; Mu H; Liu X; Zhang L; Qu J
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pole analysis of EIT-AT spectrum with Rydberg atoms.
    Shi M; Jiao Y; Zhao J
    Opt Express; 2021 Nov; 29(23):37253-37261. PubMed ID: 34808802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction.
    Bai Z; Huang G
    Opt Express; 2016 Mar; 24(5):4442-4461. PubMed ID: 29092273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the Rydberg EIT spectrum in a thermal vapor.
    Su HJ; Liou JY; Lin IC; Chen YH
    Opt Express; 2022 Jan; 30(2):1499-1510. PubMed ID: 35209308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dephasing of ultracold cesium 80D
    Jiao Y; Hao L; Bai J; Fan J; Bai Z; Li W; Zhao J; Jia S
    Opt Express; 2023 Feb; 31(5):7545-7553. PubMed ID: 36859883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells.
    Fan HQ; Kumar S; Daschner R; Kübler H; Shaffer JP
    Opt Lett; 2014 May; 39(10):3030-3. PubMed ID: 24978265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically tunable grating in a
    Yuan J; Dong S; Wu C; Wang L; Xiao L; Jia S
    Opt Express; 2020 Aug; 28(16):23820-23828. PubMed ID: 32752373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise measurement of microwave polarization using a Rydberg atom-based mixer.
    Wang Y; Jia F; Hao J; Cui Y; Zhou F; Liu X; Mei J; Yu Y; Liu Y; Zhang J; Xie F; Zhong Z
    Opt Express; 2023 Mar; 31(6):10449-10457. PubMed ID: 37157591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mean field theory of weakly-interacting Rydberg polaritons in the EIT system based on the nearest-neighbor distribution.
    Hsiao SS; Chen KT; Yu IA
    Opt Express; 2020 Sep; 28(19):28414-28429. PubMed ID: 32988112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of a four-level EIT-type system in the presence of structured coupling light for microwave field detection.
    Kumar R; Manchaiah D; Easwaran RK
    Appl Opt; 2022 Dec; 61(36):10681-10687. PubMed ID: 36606926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency.
    Mohapatra AK; Jackson TR; Adams CS
    Phys Rev Lett; 2007 Mar; 98(11):113003. PubMed ID: 17501049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atom-based sensing technique of microwave electric and magnetic fields via a single rubidium vapor cell.
    Feng Z; Liu X; Zhang Y; Ruan W; Song Z; Qu J
    Opt Express; 2023 Jan; 31(2):1692-1704. PubMed ID: 36785199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.