These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37707057)

  • 1. Generalizable turbulent flow forecasting for adaptive optics control.
    Shaffer BD; Vorenberg JR; Wilcox CC; McDaniel AJ
    Appl Opt; 2023 Aug; 62(23):G1-G11. PubMed ID: 37707057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PredictionNet: a long short-term memory-based attention network for atmospheric turbulence prediction in adaptive optics.
    Wu J; Tang J; Zhang M; Di J; Hu L; Wu X; Liu G; Zhao J
    Appl Opt; 2022 May; 61(13):3687-3694. PubMed ID: 36256409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mode decomposition based predictive model performance on supersonic and transonic aero-optical wavefront measurements.
    Shaffer BD; McDaniel AJ; Wilcox CC; Ahn ES
    Appl Opt; 2021 Sep; 60(25):G170-G180. PubMed ID: 34613209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of real-time adaptive optics compensation in a turbulent channel with high-dimensional spatial-mode encoding.
    Zhao J; Zhou Y; Braverman B; Liu C; Pang K; Steinhoff NK; Tyler GA; Willner AE; Boyd RW
    Opt Express; 2020 May; 28(10):15376-15391. PubMed ID: 32403566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved adaptive-optics performance using polychromatic speckle mitigation.
    Van Zandt NR; Spencer MF
    Appl Opt; 2020 Feb; 59(4):1071-1081. PubMed ID: 32225243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of time-variant turbulence behavior on prediction for adaptive optics systems.
    van Kooten M; Doelman N; Kenworthy M
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):731-740. PubMed ID: 31044999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive optics model characterizing turbulence mitigation for free space optical communications link budgets.
    Stotts LB; Andrews LC
    Opt Express; 2021 Jun; 29(13):20307-20321. PubMed ID: 34266123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tomography approach for multi-object adaptive optics.
    Vidal F; Gendron E; Rousset G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A253-64. PubMed ID: 21045886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of the neural network-based prediction model in closed-loop adaptive optics.
    Wang N; Zhu L; Yuan Q; Ge X; Gao Z; Wang S; Yang P
    Opt Lett; 2024 Jun; 49(11):2926-2929. PubMed ID: 38824294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of adaptive optics for atmospheric coherent laser communications.
    Liu C; Chen S; Li X; Xian H
    Opt Express; 2014 Jun; 22(13):15554-63. PubMed ID: 24977813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
    Steinbock MJ; Hyde MW; Schmidt JD
    Appl Opt; 2014 Jun; 53(18):3821-31. PubMed ID: 24979411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First laboratory results with the LINC-NIRVANA high layer wavefront sensor.
    Zhang X; Gaessler W; Conrad AR; Bertram T; Arcidiacono C; Herbst TM; Kuerster M; Bizenberger P; Meschke D; Rix HW; Rao C; Mohr L; Briegel F; Kittmann F; Berwein J; Trowitzsch J; Schreiber L; Ragazzoni R; Diolaiti E
    Opt Express; 2011 Aug; 19(17):16087-95. PubMed ID: 21934971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope.
    Vorontsov M; Riker J; Carhart G; Gudimetla VS; Beresnev L; Weyrauch T; Roberts LC
    Appl Opt; 2009 Jan; 48(1):A47-57. PubMed ID: 19107154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavefront error correction with adaptive optics in diabetic retinopathy.
    Valeshabad AK; Wanek J; Grant P; Lim JI; Chau FY; Zelkha R; Camardo N; Shahidi M
    Optom Vis Sci; 2014 Oct; 91(10):1238-43. PubMed ID: 24748028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations.
    Vogel CR; Tyler GA; Wittich DJ
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1666-79. PubMed ID: 25121456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle.
    Chen M; Liu C; Rui D; Xian H
    Opt Express; 2018 Feb; 26(4):4230-4242. PubMed ID: 29475275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile all-digital transport-of-intensity based wavefront sensor and adaptive optics using a DMD.
    Singh K; Dudley A; Forbes A
    Opt Express; 2023 Feb; 31(5):8987-8997. PubMed ID: 36860001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced neural function in highly aberrated eyes following perceptual learning with adaptive optics.
    Sabesan R; Barbot A; Yoon G
    Vision Res; 2017 Mar; 132():78-84. PubMed ID: 27836334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
    Yang H; Soloviev O; Verhaegen M
    Opt Express; 2015 Sep; 23(19):24587-601. PubMed ID: 26406661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction.
    Li M; Gao W; Cvijetic M
    Appl Opt; 2017 Jan; 56(2):284-297. PubMed ID: 28085865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.