These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37707109)

  • 1. Vortex array generation based on quasi-Talbot effects.
    Li J; Li F; Chen K; Yu L; Chen X; Qian X; Ma J; Yuan C
    J Opt Soc Am A Opt Image Sci Vis; 2023 Aug; 40(8):1537-1544. PubMed ID: 37707109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of diffraction of vortex beams from 2D orthogonal periodic structures and Talbot self-healing under vortex beam illumination.
    Rasouli S; Hebri D
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):800-808. PubMed ID: 31045007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical vortex convolution generator and quasi-Talbot effect.
    Tang A; Xiong G; Shen F
    Opt Lett; 2023 Apr; 48(7):1866-1869. PubMed ID: 37221786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-Talbot effect with vortex beams and formation of vortex beamlet arrays.
    Knyazev B; Kameshkov O; Vinokurov N; Cherkassky V; Choporova Y; Pavelyev V
    Opt Express; 2018 May; 26(11):14174-14185. PubMed ID: 29877459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on the diffraction-based generation of a 2D orthogonal lattice of optical beams: physical bases and application for a vortex beam multiplication.
    Hebri D; Rasouli S
    J Opt Soc Am A Opt Image Sci Vis; 2022 Sep; 39(9):1694-1711. PubMed ID: 36215638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design.
    Gao H; Li Y; Chen L; Jin J; Pu M; Li X; Gao P; Wang C; Luo X; Hong M
    Nanoscale; 2018 Jan; 10(2):666-671. PubMed ID: 29239455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled generation of array beams of higher order orbital angular momentum and study of their frequency-doubling characteristics.
    Harshith BS; Samanta GK
    Sci Rep; 2019 Jul; 9(1):10916. PubMed ID: 31358804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory and generation of heterogeneous 2D arrays of optical vortices by using 2D fork-shaped gratings: topological charge and power sharing management.
    Khazaei AM; Hebri D; Rasouli S
    Opt Express; 2023 May; 31(10):16361-16379. PubMed ID: 37157716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating the 1.5 kW mode-tunable fractional vortex beam by a coherent beam combining system.
    Long J; Jin K; Chen Q; Chang H; Chang Q; Ma Y; Wu J; Su R; Ma P; Zhou P
    Opt Lett; 2023 Oct; 48(19):5021-5024. PubMed ID: 37773375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical vortex beam controlling based on fork grating stored in a dye-doped liquid crystal cell.
    Soleimani P; Khoshsima H; Yeganeh M
    Sci Rep; 2022 Dec; 12(1):21271. PubMed ID: 36481872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional Dammann vortex array with tunable topological charge.
    Yu J; Zhou C; Jia W; Hu A; Cao W; Wu J; Wang S
    Appl Opt; 2012 May; 51(13):2485-90. PubMed ID: 22614430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer.
    Chu SC; Yang CS; Otsuka K
    Opt Express; 2008 Nov; 16(24):19934-49. PubMed ID: 19030081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of an asymmetric optical vortex array with tunable singularity distribution.
    Zeng R; Yang Y
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):313-320. PubMed ID: 33690459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angular-multiplexed multichannel optical vortex arrays generators based on geometric metasurface.
    Jin J; Li X; Pu M; Guo Y; Gao P; Xu M; Zhang Z; Luo X
    iScience; 2021 Feb; 24(2):102107. PubMed ID: 33615203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of arbitrarily structured optical vortex arrays based on the epicycle model.
    Tai Y; Fan H; Ma X; Wei W; Zhang H; Tang M; Li X
    Opt Express; 2024 Mar; 32(6):10577-10586. PubMed ID: 38571265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of dipole vortex array using spiral Dammann zone plates.
    Yu J; Zhou C; Jia W; Hu A; Cao W; Wu J; Wang S
    Appl Opt; 2012 Oct; 51(28):6799-804. PubMed ID: 23033095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-order mixed vortex beam generator.
    Wang D; Feng C; Meng L; Wang H; Yuan L
    Opt Express; 2023 Dec; 31(25):42218-42229. PubMed ID: 38087600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-Talbot effect of a grating in the deep Fresnel diffraction region.
    Teng S; Chen X; Zhou T; Cheng C
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1656-65. PubMed ID: 17491634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Optical Vortex Beam Generator via Cross-Phase Based on Metasurface.
    Guo K; Liu Y; Chen L; Wei Z; Liu H
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge.
    Xu HF; Zhang R; Sheng ZQ; Qu J
    Opt Express; 2019 Aug; 27(17):23959-23969. PubMed ID: 31510292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.