BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37707473)

  • 1. Centrosomal organization of Cep152 provides flexibility in Plk4 and procentriole positioning.
    Sullenberger C; Kong D; Avazpour P; Luvsanjav D; Loncarek J
    J Cell Biol; 2023 Dec; 222(12):. PubMed ID: 37707473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cep57 and Cep57l1 function redundantly to recruit the Cep63-Cep152 complex for centriole biogenesis.
    Zhao H; Yang S; Chen Q; Duan X; Li G; Huang Q; Zhu X; Yan X
    J Cell Sci; 2020 Jul; 133(13):. PubMed ID: 32503940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication.
    Sonnen KF; Gabryjonczyk AM; Anselm E; Stierhof YD; Nigg EA
    J Cell Sci; 2013 Jul; 126(Pt 14):3223-33. PubMed ID: 23641073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cep152 interacts with Plk4 and is required for centriole duplication.
    Hatch EM; Kulukian A; Holland AJ; Cleveland DW; Stearns T
    J Cell Biol; 2010 Nov; 191(4):721-9. PubMed ID: 21059850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152.
    Kim TS; Park JE; Shukla A; Choi S; Murugan RN; Lee JH; Ahn M; Rhee K; Bang JK; Kim BY; Loncarek J; Erikson RL; Lee KS
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):E4849-57. PubMed ID: 24277814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome.
    Cizmecioglu O; Arnold M; Bahtz R; Settele F; Ehret L; Haselmann-Weiss U; Antony C; Hoffmann I
    J Cell Biol; 2010 Nov; 191(4):731-9. PubMed ID: 21059844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrobin-centrosomal protein 4.1-associated protein (CPAP) interaction promotes CPAP localization to the centrioles during centriole duplication.
    Gudi R; Zou C; Dhar J; Gao Q; Vasu C
    J Biol Chem; 2014 May; 289(22):15166-78. PubMed ID: 24700465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PIPKIγ targets to the centrosome and restrains centriole duplication.
    Xu Q; Zhang Y; Xiong X; Huang Y; Salisbury JL; Hu J; Ling K
    J Cell Sci; 2014 Mar; 127(Pt 6):1293-305. PubMed ID: 24434581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asterless is a scaffold for the onset of centriole assembly.
    Dzhindzhev NS; Yu QD; Weiskopf K; Tzolovsky G; Cunha-Ferreira I; Riparbelli M; Rodrigues-Martins A; Bettencourt-Dias M; Callaini G; Glover DM
    Nature; 2010 Oct; 467(7316):714-8. PubMed ID: 20852615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of the Cep57-Cep63 Interaction for Proper Cep152 Recruitment and Centriole Duplication.
    Wei Z; Kim TS; Ahn JI; Meng L; Chen Y; Ryu EK; Ku B; Zhou M; Kim SJ; Bang JK; van Deursen JM; Park JE; Lee KS
    Mol Cell Biol; 2020 Apr; 40(10):. PubMed ID: 32152252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architectural basis for cylindrical self-assembly governing Plk4-mediated centriole duplication in human cells.
    Il Ahn J; Zhang L; Ravishankar H; Fan L; Kirsch K; Zeng Y; Meng L; Park JE; Yun HY; Ghirlando R; Ma B; Ball D; Ku B; Nussinov R; Schmit JD; Heinz WF; Kim SJ; Karpova T; Wang YX; Lee KS
    Commun Biol; 2023 Jul; 6(1):712. PubMed ID: 37433832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLK4 self-phosphorylation drives the selection of a single site for procentriole assembly.
    Scott P; Curinha A; Gliech C; Holland AJ
    J Cell Biol; 2023 Dec; 222(12):. PubMed ID: 37773039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity interactions among centrosome components identify regulators of centriole duplication.
    Firat-Karalar EN; Rauniyar N; Yates JR; Stearns T
    Curr Biol; 2014 Mar; 24(6):664-70. PubMed ID: 24613305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophosphorylation of polo-like kinase 4 and its role in centriole duplication.
    Sillibourne JE; Tack F; Vloemans N; Boeckx A; Thambirajah S; Bonnet P; Ramaekers FC; Bornens M; Grand-Perret T
    Mol Biol Cell; 2010 Feb; 21(4):547-61. PubMed ID: 20032307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis.
    Park SY; Park JE; Kim TS; Kim JH; Kwak MJ; Ku B; Tian L; Murugan RN; Ahn M; Komiya S; Hojo H; Kim NH; Kim BY; Bang JK; Erikson RL; Lee KW; Kim SJ; Oh BH; Yang W; Lee KS
    Nat Struct Mol Biol; 2014 Aug; 21(8):696-703. PubMed ID: 24997597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cep63 and cep152 cooperate to ensure centriole duplication.
    Brown NJ; Marjanović M; Lüders J; Stracker TH; Costanzo V
    PLoS One; 2013; 8(7):e69986. PubMed ID: 23936128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RAC1 activator Tiam1 regulates centriole duplication through controlling PLK4 levels.
    Porter AP; Reed H; White GRM; Ogg EL; Whalley HJ; Malliri A
    J Cell Sci; 2021 Apr; 134(7):. PubMed ID: 33758078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophosphorylation-induced self-assembly and STIL-dependent reinforcement underlie Plk4's ring-to-dot localization conversion around a human centriole.
    Park JE; Meng L; Ryu EK; Nagashima K; Baxa U; Bang JK; Lee KS
    Cell Cycle; 2020 Dec; 19(24):3419-3436. PubMed ID: 33323015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved molecular interactions in centriole-to-centrosome conversion.
    Fu J; Lipinszki Z; Rangone H; Min M; Mykura C; Chao-Chu J; Schneider S; Dzhindzhev NS; Gottardo M; Riparbelli MG; Callaini G; Glover DM
    Nat Cell Biol; 2016 Jan; 18(1):87-99. PubMed ID: 26595382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organization of Plk4 regulates symmetry breaking in centriole duplication.
    Yamamoto S; Kitagawa D
    Nat Commun; 2019 Apr; 10(1):1810. PubMed ID: 31000710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.