These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37707498)
1. Boosting the "Solid-Liquid-Solid" Conversion Reaction via Bifunctional Carbonate-Based Electrolyte for Ultra-long-life Potassium-Sulfur Batteries. Ye S; Yao N; Chen X; Ma M; Wang L; Chen Z; Yao Y; Zhang Q; Yu Y Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202307728. PubMed ID: 37707498 [TBL] [Abstract][Full Text] [Related]
2. Rational Electrolyte Design toward Cyclability Remedy for Room-Temperature Sodium-Sulfur Batteries. Wu J; Tian Y; Gao Y; Gao Z; Meng Y; Wang Y; Wang X; Zhou D; Kang F; Li B; Wang G Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202205416. PubMed ID: 35538589 [TBL] [Abstract][Full Text] [Related]
3. Empowering the Potassium-Sulfur Battery with Commendable Reaction Kinetics and Capacity Output by Localized High-Concentration Electrolytes. Chen X; Meng Y; Xiao D; Qin L ACS Appl Mater Interfaces; 2024 May; 16(19):24464-24472. PubMed ID: 38710103 [TBL] [Abstract][Full Text] [Related]
4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
5. Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries. Liu H; Lai WH; Yang Q; Lei Y; Wu C; Wang N; Wang YX; Chou SL; Liu HK; Dou SX Nanomicro Lett; 2021 May; 13(1):121. PubMed ID: 34138346 [TBL] [Abstract][Full Text] [Related]
6. Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive. Liu D; Li Z; Li X; Chen X; Li Z; Yuan L; Huang Y ACS Appl Mater Interfaces; 2022 Feb; 14(5):6658-6666. PubMed ID: 35076203 [TBL] [Abstract][Full Text] [Related]
7. Realizing an Applicable "Solid → Solid" Cathode Process via a Transplantable Solid Electrolyte Interface for Lithium-Sulfur Batteries. Chen X; Yuan L; Li Z; Chen S; Ji H; Qin Y; Wu L; Shen Y; Wang L; Hu J; Huang Y ACS Appl Mater Interfaces; 2019 Aug; 11(33):29830-29837. PubMed ID: 31361114 [TBL] [Abstract][Full Text] [Related]
8. Promoting Cathodic Kinetics and Anodic Stability in Practical Room-Temperature Sodium-Sulfur Batteries with Bifunctional Electrolytes. Qian C; Wang Z; Xu J; Fu D; Zhang F; Li A; Zhang Y; Li Z; Li H; Wu X ACS Appl Mater Interfaces; 2024 Oct; 16(39):52466-52475. PubMed ID: 39297885 [TBL] [Abstract][Full Text] [Related]
9. Revamping Lithium-Sulfur Batteries for High Cell-Level Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solid-Electrolyte Interphase Layers. Wu P; Dong M; Tan J; Kang DA; Yu C Adv Mater; 2021 Dec; 33(48):e2104246. PubMed ID: 34608672 [TBL] [Abstract][Full Text] [Related]
11. Long-life potassium metal batteries enabled by anion-derived solid electrolyte interphase using concentrated ionic liquid electrolytes. Jeon J; Kang S; Koo B; Kim H; Hong ST; Lee H J Colloid Interface Sci; 2024 Sep; 670():617-625. PubMed ID: 38781652 [TBL] [Abstract][Full Text] [Related]
12. Fluorinated ester additive to regulate nucleation behavior and interfacial chemistry of room temperature sodium-sulfur batteries. Wu Y; Gao X; Hu P; Li Y; Xiao F J Colloid Interface Sci; 2025 Jan; 678(Pt B):1125-1134. PubMed ID: 39278038 [TBL] [Abstract][Full Text] [Related]
13. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Hu J; Chen K; Yao Z; Li C Sci Bull (Beijing); 2021 Apr; 66(7):694-707. PubMed ID: 36654445 [TBL] [Abstract][Full Text] [Related]
14. N, S-Coordinated Co Single Atomic Catalyst Boosting Adsorption and Conversion of Lithium Polysulfides for Lithium-Sulfur Batteries. Liu K; Wang X; Gu S; Yuan H; Jiang F; Li Y; Tan W; Long Q; Chen J; Xu Z; Lu Z Small; 2022 Nov; 18(46):e2204707. PubMed ID: 36193958 [TBL] [Abstract][Full Text] [Related]
15. A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries. Wu X; Zhang Q; Tang G; Cao Y; Yang H; Li H; Ai X Small; 2022 Mar; 18(10):e2106144. PubMed ID: 35038220 [TBL] [Abstract][Full Text] [Related]
16. Reinforcing the Electrode/Electrolyte Interphases of Lithium Metal Batteries Employing Locally Concentrated Ionic Liquid Electrolytes. Liu X; Mariani A; Diemant T; Di Pietro ME; Dong X; Mele A; Passerini S Adv Mater; 2024 Jan; 36(1):e2309062. PubMed ID: 37956687 [TBL] [Abstract][Full Text] [Related]
17. High-Performance Quasi-Solid-State Lithium-Sulfur Battery with a Controllably Solidified Cathode-Electrolyte Interface. Li CC; Wang WP; Feng XX; Wang YH; Zhang Y; Zhang J; Zhang L; Zheng JC; Luo Y; Chen Z; Xin S; Guo YG ACS Appl Mater Interfaces; 2023 Apr; 15(15):19066-19074. PubMed ID: 37036933 [TBL] [Abstract][Full Text] [Related]
18. Optimizing Aqueous Zinc-Sulfur Battery Performance via Regulating Acetonitrile Co-Solvents and Carbon Nanotube Carriers. Ge Z; Liu H; Wang S; Ma Y; Xu W; Su L; Han L; Gong L; Wang J ChemSusChem; 2024 Oct; ():e202401429. PubMed ID: 39429121 [TBL] [Abstract][Full Text] [Related]
19. Charge-Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium-Sulfur Batteries. Suriyakumar S; Kathiresan M; Stephan AM ACS Omega; 2019 Feb; 4(2):3894-3903. PubMed ID: 31459600 [TBL] [Abstract][Full Text] [Related]
20. Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium-Sulfur Battery. Zhang T; Zhang J; Yang S; Li Y; Dong R; Yuan J; Liu Y; Wu Z; Song Y; Zhong Y; Xiang W; Chen Y; Zhong B; Guo X ACS Appl Mater Interfaces; 2021 Sep; 13(37):44497-44508. PubMed ID: 34506122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]