These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37707882)
1. Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage. Yang P; Wu Z; Wang S; Li M; Chen H; Qian S; Zheng M; Wang Y; Li S; Qiu J; Zhang S Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202311460. PubMed ID: 37707882 [TBL] [Abstract][Full Text] [Related]
2. A Molten Alkali Approach to Tailor Hydroxyl Groups of Hexaazatrinaphthalene Toward High-Capacity and Low-Potential Anode of Aqueous Proton Batteries. Zhao G; Yan X; Dai Y; Wang X; Wang Z; Wang B; Li R; Hao Y; Yu H; Ma H; Li H; Wu C; Liu J; Hu M; Yang J Small; 2024 Dec; 20(51):e2406962. PubMed ID: 39370663 [TBL] [Abstract][Full Text] [Related]
3. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524 [TBL] [Abstract][Full Text] [Related]
4. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications. Yuan S; Huang X; Kong T; Yan L; Wang Y Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018 [TBL] [Abstract][Full Text] [Related]
5. Immobilizing Quinone-Fused Aza-Phenazine into π-d Conjugated Coordination Polymers with Multiple-Active Sites for Sodium-Ion Batteries. Cheng L; Yu J; Chen L; Chu J; Wang J; Wang HG; Feng D; Cui F; Zhu G Small; 2023 Aug; 19(35):e2301578. PubMed ID: 37105762 [TBL] [Abstract][Full Text] [Related]
6. Design and Synthesis of a π-Conjugated N-Heteroaromatic Material for Aqueous Zinc-Organic Batteries with Ultrahigh Rate and Extremely Long Life. Li S; Shang J; Li M; Xu M; Zeng F; Yin H; Tang Y; Han C; Cheng HM Adv Mater; 2023 Dec; 35(50):e2207115. PubMed ID: 36177698 [TBL] [Abstract][Full Text] [Related]
7. Revealing Hydrogen Bond Effect in Rechargeable Aqueous Zinc-Organic Batteries. Guo J; Du JY; Liu WQ; Huang G; Zhang XB Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202406465. PubMed ID: 38705847 [TBL] [Abstract][Full Text] [Related]
8. Extending π-Conjugation and Integrating Multi-Redox Centers into One Molecule for High-Capacity Organic Cathodes. Wang Z; Qi Q; Jin W; Zhao X; Huang X; Li Y ChemSusChem; 2021 Sep; 14(18):3858-3866. PubMed ID: 34258888 [TBL] [Abstract][Full Text] [Related]
9. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na Yao Y; Pei M; Su C; Jin X; Qu Y; Song Z; Jiang W; Jian X; Hu F Small; 2024 Aug; 20(34):e2401481. PubMed ID: 38616774 [TBL] [Abstract][Full Text] [Related]
10. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage. Yang X; Gong L; Liu X; Zhang P; Li B; Qi D; Wang K; He F; Jiang J Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202207043. PubMed ID: 35638157 [TBL] [Abstract][Full Text] [Related]
11. A Nitrogen-Rich 2D sp Xu S; Wang G; Biswal BP; Addicoat M; Paasch S; Sheng W; Zhuang X; Brunner E; Heine T; Berger R; Feng X Angew Chem Int Ed Engl; 2019 Jan; 58(3):849-853. PubMed ID: 30461145 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Shi R; Liu L; Lu Y; Wang C; Li Y; Li L; Yan Z; Chen J Nat Commun; 2020 Jan; 11(1):178. PubMed ID: 31924753 [TBL] [Abstract][Full Text] [Related]
13. Anchoring π-d Conjugated Metal-Organic Frameworks with Dual-Active Centers on Carbon Nanotubes for Advanced Potassium-Ion Batteries. Wang J; Jia H; Liu Z; Yu J; Cheng L; Wang HG; Cui F; Zhu G Adv Mater; 2024 Feb; 36(6):e2305605. PubMed ID: 37566706 [TBL] [Abstract][Full Text] [Related]
14. Boosting H Chu J; Liu Z; Yu J; Cheng L; Wang HG; Cui F; Zhu G Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202314411. PubMed ID: 37897193 [TBL] [Abstract][Full Text] [Related]
15. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries. Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839 [TBL] [Abstract][Full Text] [Related]
16. Carbonyl-rich Poly(pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries. Li K; Xu S; Han D; Si Z; Wang HG Chem Asian J; 2021 Jul; 16(14):1973-1978. PubMed ID: 34057815 [TBL] [Abstract][Full Text] [Related]
17. One-Dimensional π-d Conjugated Conductive Metal-Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries. Sang Z; Liu J; Zhang X; Yin L; Hou F; Liang J ACS Nano; 2023 Feb; 17(3):3077-3087. PubMed ID: 36688450 [TBL] [Abstract][Full Text] [Related]
18. A Pyrazine-Based Polymer for Fast-Charge Batteries. Mao M; Luo C; Pollard TP; Hou S; Gao T; Fan X; Cui C; Yue J; Tong Y; Yang G; Deng T; Zhang M; Ma J; Suo L; Borodin O; Wang C Angew Chem Int Ed Engl; 2019 Dec; 58(49):17820-17826. PubMed ID: 31571354 [TBL] [Abstract][Full Text] [Related]
19. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255 [TBL] [Abstract][Full Text] [Related]
20. Stable quasi-solid-state lithium-organic battery based on composite gel polymer electrolyte and compatible organic cathode material. Yu J; Chen L; Wu Q; Wang J; Cheng L; Wang HG J Colloid Interface Sci; 2023 Nov; 649():159-165. PubMed ID: 37348335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]