These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37708013)
1. Estimation of Joint Torque by EMG-Driven Neuromusculoskeletal Models and LSTM Networks. Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3722-3731. PubMed ID: 37708013 [TBL] [Abstract][Full Text] [Related]
2. Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning. Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM IEEE Trans Neural Syst Rehabil Eng; 2022; 30():600-609. PubMed ID: 35239487 [TBL] [Abstract][Full Text] [Related]
3. Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification. Zhang L; Zhang X; Zhu X; Wang R; Gutierrez-Farewik EM Front Neurosci; 2023; 17():1254088. PubMed ID: 37712095 [TBL] [Abstract][Full Text] [Related]
4. Ankle Joint Torque Prediction Using an NMS Solver Informed-ANN Model and Transfer Learning. Zhang L; Zhu X; Gutierrez-Farewik EM; Wang R IEEE J Biomed Health Inform; 2022 Dec; 26(12):5895-5906. PubMed ID: 36112547 [TBL] [Abstract][Full Text] [Related]
5. Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks. Schulte RV; Zondag M; Buurke JH; Prinsen EC Front Robot AI; 2022; 9():869476. PubMed ID: 35546902 [TBL] [Abstract][Full Text] [Related]
6. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
7. A Neural Network Estimation of Ankle Torques From Electromyography and Accelerometry. Siu HC; Sloboda J; McKindles RJ; Stirling LA IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1624-1633. PubMed ID: 34388093 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. Koo TK; Mak AF J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650 [TBL] [Abstract][Full Text] [Related]
9. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output. George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646 [TBL] [Abstract][Full Text] [Related]
10. Automated estimation of ankle muscle EMG envelopes and resulting plantar-dorsi flexion torque from 64 garment-embedded electrodes uniformly distributed around the human leg. Simonetti D; Koopman B; Sartori M J Electromyogr Kinesiol; 2022 Dec; 67():102701. PubMed ID: 36096035 [TBL] [Abstract][Full Text] [Related]
12. Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression. Wang M; Chen Z; Zhan H; Zhang J; Wu X; Jiang D; Guo Q Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067948 [TBL] [Abstract][Full Text] [Related]
13. Lower Extremity Motor Impairments in Ambulatory Chronic Hemiparetic Stroke: Evidence for Lower Extremity Weakness and Abnormal Muscle and Joint Torque Coupling Patterns. Sánchez N; Acosta AM; Lopez-Rosado R; Stienen AHA; Dewald JPA Neurorehabil Neural Repair; 2017 Sep; 31(9):814-826. PubMed ID: 28786303 [TBL] [Abstract][Full Text] [Related]
14. A Linear Approach to Optimize an EMG-Driven Neuromusculoskeletal Model for Movement Intention Detection in Myo-Control: A Case Study on Shoulder and Elbow Joints. Buongiorno D; Barsotti M; Barone F; Bevilacqua V; Frisoli A Front Neurorobot; 2018; 12():74. PubMed ID: 30483090 [TBL] [Abstract][Full Text] [Related]
15. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature. Ma X; Liu Y; Song Q; Wang C Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326 [TBL] [Abstract][Full Text] [Related]
16. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
17. EMG-Based Estimation of Lower Limb Joint Angles and Moments Using Long Short-Term Memory Network. Truong MTN; Ali AEA; Owaki D; Hayashibe M Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992041 [TBL] [Abstract][Full Text] [Related]
18. Automated spatial localization of ankle muscle sites and model-based estimation of joint torque post-stroke via a wearable sensorised leg garment. Simonetti D; Hendriks M; Herijgers J; Cuerdo Del Rio C; Koopman B; Keijsers N; Sartori M J Electromyogr Kinesiol; 2023 Oct; 72():102808. PubMed ID: 37573851 [TBL] [Abstract][Full Text] [Related]