These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37708019)
21. Research progress of computer aided diagnosis system for pulmonary nodules in CT images. Wang Y; Wu B; Zhang N; Liu J; Ren F; Zhao L J Xray Sci Technol; 2020; 28(1):1-16. PubMed ID: 31815727 [TBL] [Abstract][Full Text] [Related]
22. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Nasrullah N; Sang J; Alam MS; Mateen M; Cai B; Hu H Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466261 [TBL] [Abstract][Full Text] [Related]
23. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks. Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H Biomed Res Int; 2019; 2019():6051939. PubMed ID: 30719445 [TBL] [Abstract][Full Text] [Related]
24. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Messay T; Hardie RC; Rogers SK Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728 [TBL] [Abstract][Full Text] [Related]
25. Pulmonary nodules detection assistant platform: An effective computer aided system for early pulmonary nodules detection in physical examination. Han Y; Qi H; Wang L; Chen C; Miao J; Xu H; Wang Z; Guo Z; Xu Q; Lin Q; Liu H; Lu J; Liang F; Feng W; Li H; Liu Y Comput Methods Programs Biomed; 2022 Apr; 217():106680. PubMed ID: 35176595 [TBL] [Abstract][Full Text] [Related]
26. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Teramoto A; Fujita H; Yamamuro O; Tamaki T Med Phys; 2016 Jun; 43(6):2821-2827. PubMed ID: 27277030 [TBL] [Abstract][Full Text] [Related]
27. Effective lung nodule detection using deep CNN with dual attention mechanisms. UrRehman Z; Qiang Y; Wang L; Shi Y; Yang Q; Khattak SU; Aftab R; Zhao J Sci Rep; 2024 Feb; 14(1):3934. PubMed ID: 38365831 [TBL] [Abstract][Full Text] [Related]
28. Design of lung nodules segmentation and recognition algorithm based on deep learning. Yu H; Li J; Zhang L; Cao Y; Yu X; Sun J BMC Bioinformatics; 2021 Nov; 22(Suppl 5):314. PubMed ID: 34749636 [TBL] [Abstract][Full Text] [Related]
29. Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks. Park B; Park H; Lee SM; Seo JB; Kim N J Digit Imaging; 2019 Dec; 32(6):1019-1026. PubMed ID: 31396776 [TBL] [Abstract][Full Text] [Related]
30. Potential lung nodules identification for characterization by variable multistep threshold and shape indices from CT images. Iqbal S; Iqbal K; Arif F; Shaukat A; Khanum A Comput Math Methods Med; 2014; 2014():241647. PubMed ID: 25506388 [TBL] [Abstract][Full Text] [Related]
31. A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules. Kailasam SP; Sathik MM Asian Pac J Cancer Prev; 2019 Feb; 20(2):457-468. PubMed ID: 30803208 [TBL] [Abstract][Full Text] [Related]
32. The detection of lung cancer using massive artificial neural network based on soft tissue technique. Rajagopalan K; Babu S BMC Med Inform Decis Mak; 2020 Oct; 20(1):282. PubMed ID: 33129343 [TBL] [Abstract][Full Text] [Related]
33. Accurate segmentation for different types of lung nodules on CT images using improved U-Net convolutional network. Zhang X; Liu X; Zhang B; Dong J; Zhang B; Zhao S; Li S Medicine (Baltimore); 2021 Oct; 100(40):e27491. PubMed ID: 34622882 [TBL] [Abstract][Full Text] [Related]
34. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487 [TBL] [Abstract][Full Text] [Related]
35. [Pulmonary nodule detection method based on convolutional neural network]. Liu Y; Hou Z; Li X; Wang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Dec; 36(6):969-977. PubMed ID: 31875371 [TBL] [Abstract][Full Text] [Related]
36. A radiomics approach for lung nodule detection in thoracic CT images based on the dynamic patterns of morphological variation. Lin FY; Chang YC; Huang HY; Li CC; Chen YC; Chen CM Eur Radiol; 2022 Jun; 32(6):3767-3777. PubMed ID: 35020016 [TBL] [Abstract][Full Text] [Related]
37. Weakly-Supervised Segmentation-Based Quantitative Characterization of Pulmonary Cavity Lesions in CT Scans. Xing W; Yang Y; Zhou Y; Jiang T; Li Y; Song Y; Hou D; Ta D IEEE J Transl Eng Health Med; 2024; 12():457-467. PubMed ID: 38899144 [TBL] [Abstract][Full Text] [Related]
38. Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification. Lavanya M; Kannan PM Asian Pac J Cancer Prev; 2017 Dec; 18(12):3395-3399. PubMed ID: 29286609 [TBL] [Abstract][Full Text] [Related]
39. Expert knowledge-infused deep learning for automatic lung nodule detection. Tan J; Huo Y; Liang Z; Li L J Xray Sci Technol; 2019; 27(1):17-35. PubMed ID: 30452432 [TBL] [Abstract][Full Text] [Related]
40. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. Zhang S; Sun F; Wang N; Zhang C; Yu Q; Zhang M; Babyn P; Zhong H J Digit Imaging; 2019 Dec; 32(6):995-1007. PubMed ID: 31044393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]